On the hyper-order of solutions of nonhomogeneous linear differential equations

被引:0
作者
Cheriet, Nour El Imane Khadidja [1 ]
Hamani, Karima [1 ]
机构
[1] Univ Mostaganem UMAB, Lab Pure & Appl Math, Dept Math, BP 227, Moslabelanem, Algeria
关键词
Linear differential equation; entire function; hyper-order; GROWTH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the hyper-order of solutions of higher order linear differential equation f((k)) + A(k-1)(z)integral((k-1)) + ... A(1)(z)integral' + A(0)(z)f = H(z), where k >= 2 is an integer, A(j) (z) (j = 0,1, ..., k-1) and H (z) (not equivalent to 0) are entire functions or polynomials. We improve previous results given by Xu and Cao.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 12 条
[1]  
Chen ZX, 2002, SCI CHINA SER A, V45, P290
[2]  
Chen ZX., 1999, Kodai Math. J, V22, P273
[3]   ESTIMATES FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION, PLUS SIMILAR ESTIMATES [J].
GUNDERSEN, GG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :88-104
[4]   On the hyper-order of solutions of a class of higher order linear differential equations [J].
Hamani, Karima ;
Belaidi, Benharrat .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (01) :27-39
[5]  
Hayman W. K., 1964, Meromorphic functions
[6]   LOCAL GROWTH OF POWER-SERIES - SURVEY OF WIMAN-VALIRON METHOD [J].
HAYMAN, WK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (03) :317-358
[7]  
Jank G., 1985, EINFUHRUNG THEORIE G
[8]  
Laine I., 1993, Nevanlinna theory and complex differential equations
[9]   Growth of solutions of second order linear differential equations [J].
Wang, Jun ;
Laine, Ilpo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :39-51
[10]  
Xu HY, 2009, ELECTRON J QUAL THEO, P1