Electrospinning of poly (ε-caprolactone-co-lactide)/Pluronic blended scaffolds for skin tissue engineering

被引:35
|
作者
Liu, Ning-hua [1 ,2 ]
Pan, Jian-feng [3 ]
Miao, Yue-E [4 ]
Liu, Tian-xi [4 ]
Xu, Feng [2 ]
Sun, Hui [1 ]
机构
[1] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Orthopaed Surg, Shanghai 200233, Peoples R China
[2] Kunshan Tradit Chinese Med Hosp, Dept Orthopaed Surg, Suzhou 215300, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Orthopaed Surg, Shanghai 200032, Peoples R China
[4] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
关键词
STEM-CELL DIFFERENTIATION; PLURONIC F-127; FIBROUS MEMBRANES; IN-VITRO; DELIVERY; POLY(L-LACTIDE-CO-EPSILON-CAPROLACTONE); NANOPARTICLES; PROLIFERATION; FABRICATION; THICKNESS;
D O I
10.1007/s10853-014-8432-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For skin tissue engineering, an ideal scaffold should mimic the natural extracellular matrix of the native skin. In this study, we reported a novel elastic sub-micron fiber scaffold blending poly (epsilon-caprolactone-co-lactide) (PLCL) and Pluronic at different ratios by electrospinning. PLCL and Pluronic were co-electrospun with the ratio of 100/0, 99/1, 95/5, 90/10, 85/15, and 75/25. These scaffolds were evaluated in terms of fiber morphology, mechanical properties, and hydrophilicity for the purpose of culturing adipose-derived stem cells (ADSCs). Cell attachment and proliferation on the scaffolds were also evaluated to demonstrate the potential of serving as a skin graft. The results indicated that all of the electrospun fibers possessed smooth surface textures and interconnected porous structures with the average diameter ranging from approximately 750-1140 nm. The higher tensile strength was observed in 95/5 and 90/10 PLCL/Pluronic blended membranes, while further incorporation of Pluronic almost has no effect on tensile strength. The water contact angle was 85A degrees for scaffold with the ratio of 99/1, while 0A degrees for 90/10, 85/15, and 75/25. In addition, the elevation of Pluronic content in composition resulted in a corresponding increase in swelling behavior. Compared with PLCL, the better cell adhesion and proliferation potential of ADSCs was exhibited on all PLCL/Pluronic blended scaffolds. ADSCs on the blended scaffolds were highly elongated and well integrated with the surrounding fibers, indicating the good cytocompatibility of PLCL/Pluronic scaffolds. Thus, these blended scaffolds have the potentially high application prospect in the field of skin tissue engineering.
引用
收藏
页码:7253 / 7262
页数:10
相关论文
共 50 条
  • [21] Evaluation of Small Intestine Submucosa and Poly(caprolactone-co-lactide) Conduits for Peripheral Nerve Regeneration
    Shim, Sun Woo
    Kwon, Doo Yeon
    Lee, Bit Na
    Kwon, Jin Seon
    Park, Ji Hoon
    Lee, Jun Hee
    Kim, Jae Ho
    Lee, Il Woo
    Shin, Jung-Woog
    Lee, Hai Bang
    Kim, Wan-Doo
    Kim, Moon Suk
    TISSUE ENGINEERING PART A, 2015, 21 (5-6) : 1142 - 1151
  • [22] A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering
    Hokmabad, Vahideh Raeisdasteh
    Davaran, Soodabeh
    Aghazadeh, Marziyeh
    Alizadeh, Effat
    Salehi, Roya
    Ramazani, Ali
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 15 (06) : 735 - 750
  • [23] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering
    Chen, Honglin
    Huang, Jin
    Yu, Jiahui
    Liu, Shiyuan
    Gu, Ping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 48 (01) : 13 - 19
  • [24] Fabrication of co-continuous poly(ε-caprolactone)/polyglycolide blend scaffolds for tissue engineering
    Allaf, Rula M.
    Rivero, Iris V.
    Ivanov, Ilia N.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (35)
  • [25] Characterizing and optimizing poly-L-lactide-co-ε-caprolactone membranes for urothelial tissue engineering
    Sartoneva, Reetta
    Haaparanta, Anne-Marie
    Lahdes-Vasama, Tuija
    Mannerstrom, Bettina
    Kellomaki, Minna
    Salomaki, Minna
    Sandor, George
    Seppanen, Riitta
    Miettinen, Susanna
    Haimi, Suvi
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (77) : 3444 - 3454
  • [26] Surface modified poly(L-lactide-co-ε-caprolactone) microspheres as scaffold for tissue engineering
    Garkhal, Kalpna
    Verma, Shalini
    Tikoo, K.
    Kumar, Neeraj
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 82A (03) : 747 - 756
  • [27] Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering
    Cui, Zhixiang
    Nelson, Brenton
    Peng, YiYan
    Li, Ke
    Pilla, Srikanth
    Li, Wan-Ju
    Turng, Lih-Sheng
    Shen, Changyu
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (06): : 1674 - 1681
  • [28] Poly(ε-caprolactone) Nanocomposite Scaffolds for Tissue Engineering: A Brief Overview
    Mkhabela, Vuyiswa J.
    Ray, Suprakas Sinha
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (01) : 535 - 545
  • [29] Poly(caprolactone) based magnetic scaffolds for bone tissue engineering
    Banobre-Lopez, M.
    Pineiro-Redondo, Y.
    De Santis, R.
    Gloria, A.
    Ambrosio, L.
    Tampieri, A.
    Dediu, V.
    Rivas, J.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [30] Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography
    Elomaa, Laura
    Teixeira, Sandra
    Hakala, Risto
    Korhonen, Harri
    Grijpma, Dirk W.
    Seppala, Jukka V.
    ACTA BIOMATERIALIA, 2011, 7 (11) : 3850 - 3856