A Software Framework for Mapping Neural Networks to a Wafer-scale Neuromorphic Hardware System

被引:0
作者
Ehrlich, Matthias [1 ]
Wendt, Karsten [1 ]
Zuehl, Lukas [1 ]
Schueffny, Rene [1 ]
Bruederle, Daniel [2 ]
Mueller, Eric [2 ]
Vogginger, Bernhard [2 ]
机构
[1] Tech Univ Dresden, Lehrstuhl Hochparallele VLSI Syst & Neuromikro, D-01062 Dresden, Germany
[2] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
来源
ARTIFICIAL NEURAL NETWORKS AND INTELLIGENT INFORMATION PROCESSING | 2010年
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this contribution we will provide the reader with outcomes of the development of a novel software framework for an unique wafer-scale neuromorphic hardware system. The hardware system is described in an abstract manner, followed by its software framework which is in the focus of this paper. We then introduce the benchmarks applied for process evaluation and provide examples of the achieved results.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 19 条
  • [1] Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System
    Schmitt, Sebastian
    Klaehn, Johann
    Bellec, Guillaume
    Gruebl, Andreas
    Guettler, Maurice
    Hartel, Andreas
    Hartmann, Stephan
    Husmann, Dan
    Husmann, Kai
    Jeltsch, Sebastian
    Karasenko, Vitali
    Kleider, Mitja
    Koke, Christoph
    Kononov, Alexander
    Mauch, Christian
    Mueller, Eric
    Mueller, Paul
    Partzsch, Johannes
    Petrovici, Mihai A.
    Schiefer, Stefan
    Scholze, Stefan
    Thanasoulis, Vasilis
    Vogginger, Bernhard
    Legenstein, Robert
    Maass, Wolfgang
    Mayr, Christian
    Schueffny, Rene
    Schemmel, Johannes
    Meier, Karlheinz
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2227 - 2234
  • [2] From clean room to machine room: commissioning of the first-generation BrainScaleS wafer-scale neuromorphic system
    Schmidt, Hartmut
    Montes, Jose
    Gruebl, Andreas
    Guettler, Maurice
    Husmann, Dan
    Ilmberger, Joscha
    Kaiser, Jakob
    Mauch, Christian
    Mueller, Eric
    Sterzenbach, Lars
    Schemmel, Johannes
    Schmitt, Sebastian
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (03):
  • [3] Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware
    Titirsha, Twisha
    Das, Anup
    LANGUAGES AND COMPILERS FOR PARALLEL COMPUTING, LCPC 2020, 2022, 13149 : 134 - 150
  • [4] Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware
    Rathi, Nitin
    Chakraborty, Indranil
    Kosta, Adarsh
    Sengupta, Abhronil
    Ankit, Aayush
    Panda, Priyadarshini
    Roy, Kaushik
    ACM COMPUTING SURVEYS, 2023, 55 (12)
  • [5] Optoelectronic neuromorphic system using the neural engineering framework
    Wang, Rui
    Qian, Cheng
    Ren, Quansheng
    Zhao, Jianye
    APPLIED OPTICS, 2017, 56 (05) : 1517 - 1525
  • [6] Autocorrelations from emergent bistability in homeostatic spiking neural networks on neuromorphic hardware
    Cramer, Benjamin
    Kreft, Markus
    Billaudelle, Sebastian
    Karasenko, Vitali
    Leibfried, Aron
    Mueller, Eric
    Spilger, Philipp
    Weis, Johannes
    Schemmel, Johannes
    Munoz, Miguel A.
    Priesemann, Viola
    Zierenberg, Johannes
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [7] The Implementation and Optimization of Neuromorphic Hardware for Supporting Spiking Neural Networks With MLP and CNN Topologies
    Ye, Wujian
    Chen, Yuehai
    Liu, Yijun
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (02) : 448 - 461
  • [8] PAX: A mixed hardware/software simulation platform for spiking neural networks
    Renaud, S.
    Tomas, J.
    Lewis, N.
    Bornat, Y.
    Daouzli, A.
    Rudolph, M.
    Destexhe, A.
    Saighi, S.
    NEURAL NETWORKS, 2010, 23 (07) : 905 - 916
  • [9] Real-Time Neuromorphic System for Large-Scale Conductance-Based Spiking Neural Networks
    Yang, Shuangming
    Wang, Jiang
    Deng, Bin
    Liu, Chen
    Li, Huiyan
    Fietkiewicz, Chris
    Loparo, Kenneth A.
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (07) : 2490 - 2503
  • [10] A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks
    Wang, Runchun M.
    Hamilton, Tara J.
    Tapson, Jonathan C.
    van Schaik, Andre
    FRONTIERS IN NEUROSCIENCE, 2015, 9