DISTRIBUTION OF CHERN-SIMONS INVARIANTS

被引:0
作者
Marche, Julien [1 ]
机构
[1] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France
关键词
Chern-Simons; 3-manifold; equidistribution; Gauss sum;
D O I
10.5802/aif.3256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a closed 3-manifold with a finite set X(M) of conjugacy classes of representations rho : pi(1)(M) -> SU2. We study here the distribution of the values of the Chern-Simons function CS : X (M) -> R/2 pi Z. We observe in some examples that it resembles the distribution of quadratic residues. In particular for specific sequences of 3-manifolds, the invariants tends to become equidistributed on the circle with white noise fluctuations of order vertical bar X(M)vertical bar(-1/2). We prove that for a manifold with toric boundary the Chern-Simons invariants of the Dehn fillings M-p/q have the same behaviour when p and q go to infinity and compute fluctuations at first order.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 5 条