Matrix Riemann-Hilbert problems with jumps across Carleson contours

被引:24
作者
Lenells, Jonatan [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 186卷 / 01期
基金
英国工程与自然科学研究理事会; 瑞典研究理事会; 欧洲研究理事会;
关键词
Matrix Riemann-Hilbert problem; Cauchy integral; Carleson contour; ASYMPTOTICS; EQUATION;
D O I
10.1007/s00605-017-1019-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of n x n-matrix Riemann-Hilbert problems for a class of jump contours and jump matrices of low regularity. Our basic assumption is that the contour Gamma is a finite union of simple closed Carleson curves in the Riemann sphere. In particular, unbounded contours with cusps, corners, and nontransversal intersections are allowed. We introduce a notion of L-p-Riemann-Hilbert problem and establish basic uniqueness results and Fredholm properties. We also investigate the implications of Fredholmness for the unique solvability and prove a theorem on contour deformation.
引用
收藏
页码:111 / 152
页数:42
相关论文
共 30 条
[1]  
[Anonymous], 1997, PROGR MATH
[2]  
[Anonymous], MEM DIFFERENTIAL EQU
[3]  
[Anonymous], 1987, Operator theory: advances and applications
[4]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[5]  
[Anonymous], 1997, Int. Math. Res. Notices
[6]  
[Anonymous], 2006, Math Surveys and Monographs
[7]  
[Anonymous], 2003, CAMBRIDGE TEXTS APPL
[8]  
[Anonymous], 1982, Soviet Math. Dokl.
[9]  
[Anonymous], 1992, Boundary problems of function theory and their application to mathematical physics
[10]  
[Anonymous], ARXIV150804097