Necklace Lie algebras and noncommutative symplectic geometry

被引:58
作者
Bocklandt, R [1 ]
Le Bruyn, L [1 ]
机构
[1] Univ Instelling Antwerp, B-2610 Antwerp, Belgium
关键词
D O I
10.1007/s002090100366
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from non-commutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9] we give a combinatorial description of all the relevant couples (alpha, lambda) which are coadjoint orbits. We give a conjectural explanation for this coadjoint orbit result and relate it to different noncommutative notions of smoothness.
引用
收藏
页码:141 / 167
页数:27
相关论文
共 27 条
[1]   ON AZUMAYA ALGEBRAS AND FINITE DIMENSIONAL REPRESENTATIONS OF RINGS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1969, 11 (04) :532-&
[2]  
BARANOVSKY V, 2001, MATHAG0103068
[3]  
BEREST Y, 2001, MATHQA0102190
[4]  
BEREST Y, 1999, AUTOMORPHISMS IDEALS
[5]  
BEREST Y, 2001, MATHAG0104248
[6]  
BOCKLANDT R, 2001, QUIVER SETTINGS REGU
[7]  
BOCKLANDT R, 2000, IN RPESS LIN MULT AL
[8]   RIGHT IDEALS OF RINGS OF DIFFERENTIAL-OPERATORS [J].
CANNINGS, RC ;
HOLLAND, MP .
JOURNAL OF ALGEBRA, 1994, 167 (01) :116-141
[9]   On the exceptional fibres of Kleinian singularities [J].
Crawley-Boevey, W .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) :1027-1037
[10]   Geometry of the moment map for representations of quivers [J].
Crawley-Boevey, W .
COMPOSITIO MATHEMATICA, 2001, 126 (03) :257-293