Nonparametric Regression Based on Hierarchical Interaction Models

被引:45
|
作者
Kohler, Michael [1 ]
Krzyzak, Adam [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Curse of dimensionality; dimension reduction; interaction models; L-2; error; nonparametric regression; projection pursuit; rate of convergence; SINGLE-INDEX MODELS; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; CONVERGENCE; NETWORKS; RATES;
D O I
10.1109/TIT.2016.2634401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the so-called hierarchical interaction models, where we assume that the computation of the value of a function m : R-d -> R is done in several layers, where in each layer a function of at most d* inputs computed by the previous layer is evaluated. We investigate two different regression estimates based on polynomial splines and on neural networks, and show that if the regression function satisfies a hierarchical interaction model and all occurring functions in the model are smooth, the rate of convergence of these estimates depends on d* (and not on d). Hence, in this case, the estimates can achieve good rate of convergence even for large d, and are in this sense able to circumvent the so-called curse of dimensionality.
引用
收藏
页码:1620 / 1630
页数:11
相关论文
共 50 条
  • [1] ON DEEP LEARNING AS A REMEDY FOR THE CURSE OF DIMENSIONALITY IN NONPARAMETRIC REGRESSION
    Bauer, Benedikt
    Kohler, Michael
    ANNALS OF STATISTICS, 2019, 47 (04) : 2261 - 2285
  • [2] Bayesian neural tree models for nonparametric regression
    Chakraborty, Tanujit
    Kamat, Gauri
    Chakraborty, Ashis Kumar
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (02) : 101 - 126
  • [3] Nonparametric regression with adaptive truncation via a convex hierarchical penalty
    Haris, Asad
    Shojaie, Ali
    Simon, Noah
    BIOMETRIKA, 2019, 106 (01) : 87 - 107
  • [4] Nonparametric Mixture of Regression Models
    Huang, Mian
    Li, Runze
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 929 - 941
  • [5] Switching nonparametric regression models
    de Souza, Camila P. E.
    Heckman, Nancy E.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 617 - 637
  • [6] Testing heteroscedasticity in nonparametric regression models based on residual analysis
    ZHANG Lei1 MEI Chang-lin21 School of Science
    Xinhua News Agency
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2008, (03) : 265 - 272
  • [7] Testing heteroscedasticity in nonparametric regression models based on residual analysis
    Zhang Lei
    Mei Chang-lin
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (03) : 265 - 272
  • [8] Testing heteroscedasticity in nonparametric regression models based on residual analysis
    Lei Zhang
    Chang-lin Mei
    Applied Mathematics-A Journal of Chinese Universities, 2008, 23 : 265 - 272
  • [9] ON CONCURVITY IN NONLINEAR AND NONPARAMETRIC REGRESSION MODELS
    Amodio, Sonia
    Aria, Massimo
    D'Ambrosio, Antonio
    STATISTICA, 2014, 74 (01) : 85 - 98
  • [10] Testing symmetry in nonparametric regression models
    Dette, H
    Kusi-Appiah, S
    Neumeyer, N
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) : 477 - 494