In this paper, we introduce the so-called hierarchical interaction models, where we assume that the computation of the value of a function m : R-d -> R is done in several layers, where in each layer a function of at most d* inputs computed by the previous layer is evaluated. We investigate two different regression estimates based on polynomial splines and on neural networks, and show that if the regression function satisfies a hierarchical interaction model and all occurring functions in the model are smooth, the rate of convergence of these estimates depends on d* (and not on d). Hence, in this case, the estimates can achieve good rate of convergence even for large d, and are in this sense able to circumvent the so-called curse of dimensionality.
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Huang, Mian
Li, Runze
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USA
Penn State Univ, Methodol Ctr, University Pk, PA 16802 USAShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Li, Runze
Wang, Shaoli
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
机构:
Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
Xinhua News Agcy, Beijing 100803, Peoples R ChinaXi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
Zhang Lei
Mei Chang-lin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
机构:
Univ Naples Federico II, Dept Econ & Stat, Via Cinthia 21,M Te S Angelo, I-80126 Naples, ItalyUniv Naples Federico II, Dept Econ & Stat, Via Cinthia 21,M Te S Angelo, I-80126 Naples, Italy
Amodio, Sonia
Aria, Massimo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dept Econ & Stat, Via Cinthia 21,M Te S Angelo, I-80126 Naples, ItalyUniv Naples Federico II, Dept Econ & Stat, Via Cinthia 21,M Te S Angelo, I-80126 Naples, Italy
Aria, Massimo
D'Ambrosio, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dept Ind Engn, I-80125 Naples, ItalyUniv Naples Federico II, Dept Econ & Stat, Via Cinthia 21,M Te S Angelo, I-80126 Naples, Italy