Real-time Adaptive State of Energy Estimation of Lithium-ion Batteries Applied in Electric Vehicles

被引:0
|
作者
Gao, Jianping [1 ]
He, Hongwen [2 ]
Zhang, Xiaowei [3 ]
Xing, Ling [4 ]
机构
[1] Henan Univ Sci & Technol, Sch Vehicle & Transportat Engn, Luoyang 471003, Peoples R China
[2] Bejing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[3] Zhengzhou Yutong Bus Co Ltd, Zhengzhou 450016, Henan, Peoples R China
[4] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China
来源
JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018 | 2018年
关键词
Electric vehicles; lithium-ion battery; state of energy; adaptive extended Kalman filter; OF-CHARGE ESTIMATION; MANAGEMENT-SYSTEMS; MODEL; PREDICTION; PACKS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State of energy estimation of lithium-ion batteries applied in electric vehicles is required for users to predict the battery recharge time. The paper developed a new mathematical model for estimating state of energy in real-time. The recursive least squares method with an optimal forgetting factor was used to identify model parameters, and the adaptive extended Kalman filter was used to estimate the state of energy. Experimental results indicated that the developed method can realize accurate model parameter estimation with modeling error less than 2 mV. The state of energy estimation error was less than 2%. The developed method can still estimate accurate state of energy even if an erroneous initial state of energy value was available.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering
    Chen, Zheng
    Fu, Yuhong
    Mi, Chunting Chris
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (03) : 1020 - 1030
  • [22] A Temperature-Dependent State of Charge Estimation Method Including Hysteresis for Lithium-Ion Batteries in Hybrid Electric Vehicles
    Choi, Eunseok
    Chang, Sekchin
    IEEE ACCESS, 2020, 8 : 129857 - 129868
  • [23] Adaptive Estimation of State of Charge for Lithium-ion Batteries
    Fang, Huazhen
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3485 - 3491
  • [24] Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles
    Zou, Yuan
    Hu, Xiaosong
    Ma, Hongmin
    Li, Shengbo Eben
    JOURNAL OF POWER SOURCES, 2015, 273 : 793 - 803
  • [25] Real-Time Capacity Estimation of Lithium-Ion Batteries Utilizing Thermal Dynamics
    Zhang, Dong
    Dey, Satadru
    Perez, Hector E.
    Moura, Scott J.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (03) : 992 - 1000
  • [26] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [27] Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries
    Wang, Xiao
    Xu, Jun
    Zhao, Yunfei
    ENERGIES, 2018, 11 (05)
  • [28] An Overview of Lithium-ion Batteries for Electric Vehicles
    Chen, Xiaopeng
    Shen, Weixiang
    Thanh Tu Vo
    Cao, Zhenwei
    Kapoor, Ajay
    2012 CONFERENCE ON POWER & ENERGY - IPEC, 2012, : 230 - 235
  • [29] State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
    Remmlinger, Juergen
    Buchholz, Michael
    Meiler, Markus
    Bernreuter, Peter
    Dietmayer, Klaus
    JOURNAL OF POWER SOURCES, 2011, 196 (12) : 5357 - 5363
  • [30] A Comparative Study of State-of-Charge Estimation Algorithms for Lithium-ion Batteries in Wireless Charging Electric Vehicles
    Tian, Yong
    Li, Dong
    Tian, Jindong
    Xia, Bizhong
    IEEE PELS WORKSHOP ON EMERGING TECHNOLOGIES: WIRELESS POWER (2016 WOW), 2016, : 186 - 190