Weakly stable constant mean curvature hypersurfaces

被引:1
作者
Fu Hai-ping [1 ,2 ]
Xu Hong-wei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
基金
中国国家自然科学基金;
关键词
constant mean curvature; weakly stable hypersurface; ends; MINIMAL HYPERSURFACES; FINITE INDEX; SUBMANIFOLDS; MANIFOLDS; SURFACES;
D O I
10.1007/s11766-009-1815-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n) be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n + 1)-dimensional Riemannian manifold N(n+1) whose (n - 1)th Ricci curvature satisfying Ric((n-1))(N) >= (n - 1)c. Denote by H and phi the mean curvature and the trace-free second fundamental form of M respectively. If vertical bar phi vertical bar(2) - (n - 2)root n(n - 1)vertical bar H vertical bar vertical bar phi vertical bar + n(2n - 1)(H(2) + c) >= 0, then M does not admit nonconstant bounded harmonic functions with finite Dirichlet integral. In particular, if N has bounded geometry and c + H(2) > 0, then M must have only one end.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 12 条
[1]  
[Anonymous], INVENT MATH
[2]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[3]  
Cao HD, 1997, MATH RES LETT, V4, P637
[4]   On constant mean curvature hypersurfaces with finite index [J].
Cheng, X .
ARCHIV DER MATHEMATIK, 2006, 86 (04) :365-374
[5]   The structure of weakly stable constant mean curvature hypersurfaces [J].
Cheng, Xu ;
Cheung, Leung-Fu ;
Zhou, Detang .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (01) :101-121
[6]   Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J].
Cheung, LF ;
Leung, PF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :525-530
[7]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906
[8]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[9]  
Li P, 2002, MATH RES LETT, V9, P95
[10]  
LI P, 1992, J DIFFER GEOM, V35, P359