POINTWISE ESTIMATES OF SOLUTIONS FOR THE EULER-POISSON EQUATIONS WITH DAMPING IN MULTI-DIMENSIONS

被引:6
作者
Wu, Zhigang [1 ]
Wang, Weike [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poisson equations; multi-dimensions; Green function; pointwise estimates; DIMENSIONAL HYDRODYNAMIC MODEL; NONLINEAR DIFFUSION WAVES; NAVIER-STOKES EQUATIONS; SMOOTH SOLUTIONS; ASYMPTOTIC-BEHAVIOR; SPHERICAL-SYMMETRY; CONSERVATION-LAWS; SEMICONDUCTORS; SYSTEM; CONVERGENCE;
D O I
10.3934/dcds.2010.26.1101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence and pointwise estimates of the Cauchy problem for the Euler-Poisson equation with damping in multi-dimensions are considered. Based on the analysis of Green function, and using the special structure of the system together with weighted energy method, we obtain the global existence of the classical solution. What's more important,is that we derive a detailed, pointwise description of asymptotic behavior of the solutions of the Cauchy problem. Then we obtain the optimal L(p)(R(n)) (p>n/n-1) convergence rate of the solutions.
引用
收藏
页码:1101 / 1117
页数:17
相关论文
共 33 条
[1]   Global existence of smooth solutions of the N-dimensional Euler-Poisson model [J].
Alì, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (02) :389-422
[2]  
[Anonymous], 1984, Applied Mathematical Sciences
[3]  
Chen GQ, 1998, NUMER MATH SCI COMP, P189
[4]  
DAFERMOS C, 1995, Z ANGEW MATH PHYS, V46, P294
[5]  
DEGOND P., 1990, Appl. Math. Lett, V3, P25, DOI [DOI 10.1016/0893-9659(90)90130-4, 10.1016/0893-9659(90)90130-4]
[6]  
DEGOND P, 1993, ANN MAT PUR APPL, V4, P87
[7]   Critical thresholds in Euler-Poisson equations [J].
Engelberg, S ;
Liu, HL ;
Tadmor, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :109-157
[8]  
Evans L., 1997, Partial Differential Equations
[9]  
GAMBA IM, 1992, COMMUN PART DIFF EQ, V17, P553
[10]   Smooth irrotational flows in the large to the Euler-Poisson system in R3+1 [J].
Guo, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (02) :249-265