Uniqueness in thermoelasticity of porous media with microtemperatures

被引:0
|
作者
Quintanilla, R. [1 ]
机构
[1] UPC Terrassa, Dept Appl Math 2, Terrassa 08222, Spain
来源
ARCHIVES OF MECHANICS | 2009年 / 61卷 / 05期
关键词
thermo-poro-elasticity; uniqueness of solutions; pre-stressed solids; Lagrange identities; MICROMORPHIC ELASTIC SOLIDS; LINEAR THERMOELASTICITY; FUNDAMENTAL-SOLUTIONS; VOIDS; MICROSTRUCTURE; IMPOSSIBILITY; LOCALIZATION; BODIES;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
THE PROBLEM DETERMINED by thermoelastic deformations when the internal energy is not positive definite, becomes ill-posed. We recall that this kind of situation happens in the study of prestressed thermoelastic solids. Thus, it will be of interest to obtain qualitative properties of solutions in this case. In this note we prove the uniqueness of solutions for the linear thermo-poro-elasticity with microtemperatures theory, when the internal energy is not to be assumed to be positive definite. We use the energy arguments combined with the Lagrange identities.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [21] Some Non-Standard Problems Related with the Mathematical Model of Thermoelasticity with Microtemperatures
    Ciarletta, Michele
    Chirita, Stan
    JOURNAL OF THERMAL STRESSES, 2013, 36 (06) : 517 - 536
  • [23] 2-D PROBLEM OF GENERALIZED THERMOELASTIC POROUS MEDIA UNDER THE EFFECT OF INITIAL STRESS AND MICROTEMPERATURES
    Othman, Mohamed I. A.
    Abd-Elaziz, Elsayed M.
    JOURNAL OF POROUS MEDIA, 2021, 24 (05) : 63 - 76
  • [24] On uniqueness and continuous dependence in type III thermoelasticity
    Leseduarte, M. C.
    Quintanilla, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 429 - 436
  • [25] A higher-order porous thermoelastic problem with microtemperatures
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (11) : 1911 - 1926
  • [26] Proving uniqueness for the solution of the problem of homogeneous and anisotropic micropolar thermoelasticity
    Chirila, Adina
    Agarwal, Ravi P.
    Marin, Marin
    BOUNDARY VALUE PROBLEMS, 2017,
  • [27] Finite energy solutions in thermoelasticity of porous materials
    Marin, M.
    Stan, G.
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (11) : 1656 - 1662
  • [28] Analysis for the strain gradient theory of porous thermoelasticity
    Fernandez, J. R.
    Magana, A.
    Masid, M.
    Quintanilla, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 247 - 268
  • [29] On uniqueness and dilatational waves in a porous Cosserat thermoelastic body
    Marin Marin
    Sorin Vlase
    Denisa Neagu
    Lucian Dominte
    Journal of Umm Al-Qura University for Engineering and Architecture, 2024, 15 (2): : 61 - 66
  • [30] Wave propagation in porous thermoelasticity with two delay times
    Chirita, Stan
    Zampoli, Vittorio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1498 - 1512