Weighted energy decay for 3D Klein-Gordon equation

被引:16
|
作者
Komech, A. I. [1 ,2 ]
Kopylova, E. A. [2 ]
机构
[1] Univ Vienna, Fak Math, A-1010 Vienna, Austria
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101447, Russia
关键词
Dispersion; Klein-Gordon equation; Relativistic equations; Resolvent; Spectral representation; Weighted spaces; Continuous spectrum; Born series; Convolution; Long-time asymptotics; Asymptotic completeness; MULTICHANNEL NONLINEAR SCATTERING; SCHRODINGER-OPERATORS; ASYMPTOTIC STABILITY; SPECTRAL PROPERTIES; TIME-DECAY; EXPANSIONS; SOLITONS;
D O I
10.1016/j.jde.2009.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a dispersive long-time decay in weighted energy norms for solutions of the 3D Klein-Gordon equation with generic potential. The decay extends the results obtained by Jensen and Kato for the 3D Schrodinger equation. For the proof we modify the spectral approach of Jensen and Kato to make it applicable to relativistic equations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 50 条
  • [21] DECAY ESTIMATES FOR FOUR DIMENSIONAL SCHRODINGER, KLEIN-GORDON AND WAVE EQUATIONS WITH OBSTRUCTIONS AT ZERO ENERGY
    Green, William R.
    Toprak, Ebru
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (5-6) : 329 - 386
  • [22] Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation
    Bellazzini, Jacopo
    Ghimenti, Marco
    Le Coz, Stefan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) : 1479 - 1522
  • [23] Variational aspects of the Klein-Gordon equation
    Datta, S. N.
    Ghosh, A.
    Chakraborty, R.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (02) : 181 - 187
  • [24] The Klein-Gordon Equation in Machian Model
    Liu, Bin
    Dai, Yun-Chuan
    Hu, Xian-Ru
    Deng, Jian-Bo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3544 - 3551
  • [25] SCATTERING THEORY FOR ENERGY-SUPERCRITICAL KLEIN-GORDON EQUATION
    Miao, Changxing
    Zheng, Jiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 2073 - 2094
  • [26] METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION
    Korzyuk, Academician Viktor I.
    V. Rudzko, Jan
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2022, 66 (03): : 263 - 268
  • [27] SCATTERING OF ROUGH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATIONS IN 3D
    Kwon, Soonsik
    Roy, Tristan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (3-4) : 333 - 372
  • [28] A Symmetrical Interpretation of the Klein-Gordon Equation
    Michael B. Heaney
    Foundations of Physics, 2013, 43 : 733 - 746
  • [29] A Symmetrical Interpretation of the Klein-Gordon Equation
    Heaney, Michael B.
    FOUNDATIONS OF PHYSICS, 2013, 43 (06) : 733 - 746
  • [30] The Klein-Gordon Equation in Machian Model
    Bin Liu
    Yun-Chuan Dai
    Xian-Ru Hu
    Jian-Bo Deng
    International Journal of Theoretical Physics, 2011, 50 : 3544 - 3551