Joint modelling of diffusion MRI and microscopy

被引:15
作者
Howard, Amy F. D. [1 ]
Mollink, Jeroen [1 ,3 ]
Kleinnijenhuis, Michiel [1 ]
Pallebage-Gamarallage, Menuka [2 ]
Bastiani, Matteo [1 ,4 ]
Cottaar, Michiel [1 ]
Miller, Karla L. [1 ]
Jbabdi, Saad [1 ]
机构
[1] Univ Oxford, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Oxford, England
[2] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford, England
[3] Radboud Univ Nijmegen, Med Ctr Radboudumc, Donders Inst Brain Cognit & Behav, Dept Anat, Nijmegen, Netherlands
[4] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
Diffusion MRI; Histology; White matter; Fibre response function; Orientation dispersion; CONSTRAINED SPHERICAL DECONVOLUTION; FIBER ORIENTATION DISTRIBUTIONS; HUMAN CONNECTOME; WHITE-MATTER; TRACTOGRAPHY; DISPERSION; VALIDATION; FUSION;
D O I
10.1016/j.neuroimage.2019.116014
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The combination of diffusion MRI (dMRI) with microscopy provides unique opportunities to study microstructural features of tissue, particularly when acquired in the same sample. Microscopy is frequently used to validate dMRI microstructure models, addressing the indirect nature of dMRI signals. Typically, these modalities are analysed separately, and microscopy is taken as a gold standard against which dMRI-derived parameters are validated. Here we propose an alternative approach in which we combine dMRI and microscopy data obtained from the same tissue sample to drive a single, joint model. This simultaneous analysis allows us to take advantage of the breadth of information provided by complementary data acquired from different modalities. By applying this framework to a spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate a global fibre response function to determine the fibre orientation distribution in each voxel. However, the assumption of a 'brain-wide' fibre response function may be challenged if the diffusion characteristics of white matter vary across the brain. Using a generative joint dMRI-histology model, we demonstrate that the fibre response function is dependent on local anatomy, and that current spherical-deconvolution based models may be overestimating dispersion and underestimating the number of distinct fibre populations per voxel.
引用
收藏
页数:15
相关论文
共 57 条
  • [1] FIBER COMPOSITION OF THE HUMAN CORPUS-CALLOSUM
    ABOITIZ, F
    SCHEIBEL, AB
    FISHER, RS
    ZAIDEL, E
    [J]. BRAIN RESEARCH, 1992, 598 (1-2) : 143 - 153
  • [2] Multimodal Whole Brain Registration: MRI and High Resolution Histology
    Alegro, Maryana
    Amaro-, Edson, Jr.
    Loring, Burlen
    Heinsen, Helmut
    Alho, Eduardo
    Zollei, Lilla
    Ushizima, Daniela
    Grinberg, Lea T.
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 634 - 642
  • [3] Measurement of fiber orientation distributions using high angular resolution diffusion imaging
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (05) : 1194 - 1206
  • [4] Axer Markus, 2011, Front Neuroinform, V5, P34, DOI 10.3389/fninf.2011.00034
  • [5] Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
  • [6] 2-O
  • [7] Improved tractography using asymmetric fibre orientation distributions
    Bastiani, Matteo
    Cottaar, Michiel
    Dikranian, Krikor
    Ghosh, Aurobrata
    Zhang, Hui
    Alexander, Daniel C.
    Behrens, Timothy E.
    Jbabdi, Saad
    Sotiropoulos, Stamatios N.
    [J]. NEUROIMAGE, 2017, 158 : 205 - 218
  • [8] The basis of anisotropic water diffusion in the nervous system - a technical review
    Beaulieu, C
    [J]. NMR IN BIOMEDICINE, 2002, 15 (7-8) : 435 - 455
  • [9] Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
    Behrens, T. E. J.
    Berg, H. Johansen
    Jbabdi, S.
    Rushworth, M. F. S.
    Woolrich, M. W.
    [J]. NEUROIMAGE, 2007, 34 (01) : 144 - 155
  • [10] Recognition by symmetry derivatives and the generalized structure tensor
    Bigun, J
    Bigun, T
    Nilsson, K
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (12) : 1590 - 1605