Weak approximation of a fractional SDE

被引:7
作者
Bardina, X. [2 ]
Nourdin, I. [3 ]
Rovira, C. [1 ]
Tindel, S. [4 ]
机构
[1] Univ Barcelona, Fac Matemat, E-08007 Barcelona, Spain
[2] Univ Autonoma Barcelona, Fac Ciencies, Dept Matemat, Bellaterra 08193, Spain
[3] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 5, France
[4] Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
关键词
Weak approximation; Kac-Stroock type approximation; Fractional Brownian motion; Rough paths; ROUGH PATH-ANALYSIS; BROWNIAN-MOTION; GAUSSIAN-PROCESSES; LARGE DEVIATIONS; EQUATIONS; CALCULUS; INTEGRALS; DRIVEN;
D O I
10.1016/j.spa.2009.10.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, a diffusion approximation result is shown for stochastic differential equations driven by a (Liouville) fractional Brownian motion B with Hurst parameter H is an element of (1/3, 1/2). More precisely, we resort to the Kac-Stroock type approximation using a Poisson process studied in Bardina et al. (2003) [4] and Delgado and Jolis (2000) [9], and our method of proof relies on the algebraic integration theory introduced by Gubinelli in Gubinelli (2004) [14]. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 65
页数:27
相关论文
共 33 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[3]  
Alòs E, 2001, TAIWAN J MATH, V5, P609
[4]   Convergence in law to the multiple fractional integral [J].
Bardina, X ;
Jolis, M ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 105 (02) :315-344
[5]  
BARDINA X, 2008, ARXIV07090805V2
[6]   Operators associated with a stochastic differential equation driven by fractional Brownian motions [J].
Baudoin, Fabrice ;
Coutin, Laure .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (05) :550-574
[7]   FROM RANDOM WALKS TO ROUGH PATHS [J].
Breuillard, Emmanuel ;
Friz, Peter ;
Huesmann, Martin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) :3487-3496
[8]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[9]   Weak approximation for a class of Gaussian processes [J].
Delgado, R ;
Jolis, M .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (02) :400-407
[10]   On fractional Brownian processes [J].
Feyel, D ;
De la Pradelle, A .
POTENTIAL ANALYSIS, 1999, 10 (03) :273-288