Enhancing data quality and process optimization for smart manufacturing lines in industry 4.0 scenarios

被引:6
作者
Paasche, Simon [1 ]
Groppe, Sven [2 ]
机构
[1] Robert Bosch GmbH, Automot Elect, Salzgitter, Germany
[2] Univ Lubeck, Inst Informat Syst, Lubeck, Germany
来源
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON BIGIG DATA IN EMERGENT DISTRIBUTED ENVIRONMENTS (BIDEDE 2022) | 2022年
关键词
Industry; 4.0; consistency checking; digital twin; DIGITAL TWIN; BIG DATA; CONSISTENCY;
D O I
10.1145/3530050.3532928
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An essential component of today's industry is data, which is generated during manufacturing. The goal of industry 4.0 is efficient collection, processing and analysis of this data. In our work, we address these three tasks and present an extensible system to solve them. To the best of our knowledge, the combination of a consistency checker (CC) for data preparation and a digital twin (DT) for analysis activities represents a novel approach. Consistency checking in combination with a DT leads to increased data quality, which in turn has a positive effect on analyses, like reducing errors to decrease costs, identifying relevant parameters to increase the productivity, and determining the bottleneck of a manufacturing line for enhanced production planning.
引用
收藏
页数:7
相关论文
共 22 条
  • [1] Baclawski K, 2002, LECT NOTES COMPUT SC, V2342, P454
  • [2] Validating SHACL Constraints over a SPARQL Endpoint
    Corman, Julien
    Florenzano, Fernando
    Reutter, Juan L.
    Savkovic, Ognjen
    [J]. SEMANTIC WEB - ISWC 2019, PT I, 2019, 11778 : 145 - 163
  • [3] Stream processing of healthcare sensor data: studying user traces to identify challenges from a big data perspective
    Cortes, Rudyar
    Bonnaire, Xavier
    Marin, Olivier
    Sens, Pierre
    [J]. 6TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT-2015), THE 5TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2015), 2015, 52 : 1004 - 1009
  • [4] Distributed Stream Consistency Checking
    Gao, Shen
    Dell'Aglio, Daniele
    Pan, Jeff Z.
    Bernstein, Abraham
    [J]. WEB ENGINEERING, ICWE 2018, 2018, 10845 : 387 - 403
  • [5] A SPARQL Engine for Streaming RDF Data
    Groppe, Sven
    Groppe, Jinghua
    Kukulenz, Dirk
    Linnemann, Volker
    [J]. SITIS 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGIES & INTERNET BASED SYSTEMS, 2008, : 167 - 174
  • [6] Groppe S, 2011, DATA MANAGEMENT AND QUERY PROCESSING IN SEMANTIC WEB DATABASES, P1, DOI 10.1007/978-3-642-19357-6_1
  • [7] A Semantic Model for Product Configuration in Timber Industry
    Haav, Hele-Mai
    Maigre, Riina
    [J]. DATABASES AND INFORMATION SYSTEMS X (DB&IS 2018), 2019, 315 : 143 - 158
  • [8] Semantic access to streaming and static data at Siemens
    Kharlamov, Evgeny
    Mailis, Theofilos
    Mehdi, Gulnar
    Neuenstadt, Christian
    Oezcep, Oezguer
    Roshchin, Mikhail
    Solomakhina, Nina
    Soylu, Ahmet
    Svingos, Christoforos
    Brandt, Sebastian
    Giese, Martin
    Ioannidis, Yannis
    Lamparter, Steffen
    Moeller, Ralf
    Kotidis, Yannis
    Waaler, Arild
    [J]. JOURNAL OF WEB SEMANTICS, 2017, 44 : 54 - 74
  • [9] Digital Twin in manufacturing: A categorical literature review and classification
    Kritzinger, Werner
    Karner, Matthias
    Traar, Georg
    Henjes, Jan
    Sihn, Wilfried
    [J]. IFAC PAPERSONLINE, 2018, 51 (11): : 1016 - 1022
  • [10] Improving data consistency in production control
    Reuter, Christina
    Brambring, Felix
    [J]. RESEARCH AND INNOVATION IN MANUFACTURING: KEY ENABLING TECHNOLOGIES FOR THE FACTORIES OF THE FUTURE - PROCEEDINGS OF THE 48TH CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2016, 41 : 51 - 56