Carbon nitride supported AgPd alloy nanocatalysts for dehydrogenation of formic acid under visible light

被引:51
作者
Xiao, Liping [1 ,2 ]
Jun, Young-Si [2 ,3 ]
Wu, Binghui [2 ,4 ]
Liu, Deyu [2 ]
Chuong, Tracy T. [2 ]
Fan, Jie [1 ]
Stucky, Galen D. [2 ,4 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[3] Chonnam Natl Univ, Sch Appl Chem Engn, 77 Yongbong Ro, Gwangju 500757, South Korea
[4] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
MACRORETICULAR BASIC RESIN; HYDROGEN-STORAGE MATERIALS; ROOM-TEMPERATURE; EFFICIENT CATALYST; AMBIENT CONDITIONS; NANOPARTICLES; DECOMPOSITION; PD; GENERATION; NANOCRYSTALS;
D O I
10.1039/c7ta01039g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
AgPd alloy nanoparticles deposited on carbon nitride have been synthesized by a facile one-step reduction method and exhibit high catalytic activity at near room temperature (30 degrees C) for formic acid dehydrogenation, both under visible light and in darkness. The study proves that using the synergistic combination of alloying effects and metal-support interactions greatly enhances the catalytic activity of Pd-based nanocatalysts for hydrogen generation.
引用
收藏
页码:6382 / 6387
页数:6
相关论文
共 53 条
  • [11] Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?
    Enthaler, Stephan
    von Langermann, Jan
    Schmidt, Thomas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) : 1207 - 1217
  • [12] Formic acid as a hydrogen source - recent developments and future trends
    Grasemann, Martin
    Laurenczy, Gabor
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) : 8171 - 8181
  • [13] Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage
    Gu, Xiaojun
    Lu, Zhang-Hui
    Jiang, Hai-Long
    Akita, Tomoki
    Xu, Qiang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) : 11822 - 11825
  • [14] Interfacial Effects in PdAg Bimetallic Nanosheets for Selective Dehydrogenation of Formic Acid
    Hu, Chengyi
    Mu, Xiaoliang
    Fan, Jingmin
    Ma, Haibin
    Zhao, Xiaojing
    Chen, Guangxu
    Zhou, Zhiyou
    Zheng, Nanfeng
    [J]. CHEMNANOMAT, 2016, 2 (01): : 28 - 32
  • [15] Novel PdAu@Au/C Core-Shell Catalyst: Superior Activity and Selectivity in Formic Acid Decomposition for Hydrogen Generation
    Huang, Yunjie
    Zhou, Xiaochun
    Yin, Min
    Liu, Changpeng
    Xing, Wei
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (18) : 5122 - 5128
  • [16] Hull JF, 2012, NAT CHEM, V4, P383, DOI [10.1038/NCHEM.1295, 10.1038/nchem.1295]
  • [17] Low temperature water gas shift: the link between the catalysis of WGS and formic acid decomposition over Pt/ceria
    Jacobs, G
    Patterson, PM
    Graham, UM
    Crawford, AC
    Davis, BH
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) : 1265 - 1276
  • [18] B-Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid-Formate Solutions
    Jiang, Kun
    Xu, Ke
    Zou, Shouzhong
    Cai, Wen-Bin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (13) : 4861 - 4864
  • [19] Hydrogen generation from formic acid and alcohols using homogeneous catalysts
    Johnson, Tarn C.
    Morris, David J.
    Wills, Martin
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 81 - 88
  • [20] Modification of Pd for formic acid decomposition by support grafted functional groups
    Jones, Simon
    Kolpin, Amy
    Tsang, Shik Chi Edman
    [J]. CATALYSIS STRUCTURE & REACTIVITY, 2015, 1 (01): : 19 - 24