Swift-Hohenberg equation with broken reflection symmetry

被引:55
作者
Burke, J. [1 ]
Houghton, S. M. [2 ]
Knobloch, E. [3 ]
机构
[1] Boston Univ, Ctr BioDynam, Boston, MA 02215 USA
[2] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
nonlinear dynamical systems; numerical analysis; PATTERNS; SNAKING;
D O I
10.1103/PhysRevE.80.036202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized solutions organized in the so-called snakes-and-ladders structure. This structure is a consequence of a phenomenon known as homoclinic snaking, and is in turn a consequence of spatial reversibility of the equation. We examine here the consequences of breaking spatial reversibility on the snakes-and-ladders structure. We find that the localized states now drift, and show that the snakes-and-ladders structure breaks up into a stack of isolas. We explore the evolution of this new structure with increasing reversibility breaking and study the dynamics of the system outside of the snaking region using a combination of numerical and analytical techniques.
引用
收藏
页数:5
相关论文
共 12 条
[1]   Crystallization kinetics and self-induced pinning in cellular patterns [J].
Aranson, IS ;
Malomed, BA ;
Pismen, LM ;
Tsimring, LS .
PHYSICAL REVIEW E, 2000, 62 (01) :R5-R8
[2]   SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS [J].
Beck, Margaret ;
Knobloch, Juergen ;
Lloyd, David J. B. ;
Sandstede, Bjoern ;
Wagenknecht, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :936-972
[3]   Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation [J].
Budd, CJ ;
Kuske, R .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) :73-95
[4]  
BURKE J, P 7 AIMS C DIS UNPUB
[5]   Homoclinic snaking: Structure and stability [J].
Burke, John ;
Knobloch, Edgar .
CHAOS, 2007, 17 (03)
[6]   Localized states in the generalized Swift-Hohenberg equation [J].
Burke, John ;
Knobloch, Edgar .
PHYSICAL REVIEW E, 2006, 73 (05)
[7]   Exponential asymptotics of localised patterns and snaking bifurcation diagrams [J].
Chapman, S. J. ;
Kozyreff, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :319-354
[8]   ABSOLUTE AND CONVECTIVE INSTABILITIES IN NONLINEAR-SYSTEMS [J].
CHOMAZ, JM .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1931-1934
[9]   Stable static localized structures in one dimension [J].
Coullet, P ;
Riera, C ;
Tresser, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3069-3072
[10]   FRONT MOTION, METASTABILITY AND SUBCRITICAL BIFURCATIONS IN HYDRODYNAMICS [J].
POMEAU, Y .
PHYSICA D, 1986, 23 (1-3) :3-11