Combining instance-based learning and logistic regression for multilabel classification

被引:298
作者
Cheng, Weiwei [1 ]
Huellermeier, Eyke [1 ]
机构
[1] Univ Marburg, Dept Math & Comp Sci, Marburg, Germany
关键词
Multilabel classification; Instance-based learning; Nearest neighbor classification; Logistic regression; Bayesian inference;
D O I
10.1007/s10994-009-5127-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for conventional classification, instance-based learning algorithms relying on the nearest neighbor estimation principle can be used quite successfully in this context. However, since hitherto existing algorithms do not take correlations and interdependencies between labels into account, their potential has not yet been fully exploited. In this paper, we propose a new approach to multilabel classification, which is based on a framework that unifies instance-based learning and logistic regression, comprising both methods as special cases. This approach allows one to capture interdependencies between labels and, moreover, to combine model-based and similarity-based inference for multilabel classification. As will be shown by experimental studies, our approach is able to improve predictive accuracy in terms of several evaluation criteria for multilabel prediction.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 24 条
[1]  
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
[2]  
[Anonymous], 2007, ADV NEURAL INFORM PR
[3]  
[Anonymous], P INT C MUS INF RETR
[4]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[5]  
Clare A., 2001, Lecture Notes in Computer Science, P42
[6]  
Dasarathy B. V., 1991, Nearest neighbor (NN) norms: NN pattern classification techniques, V317
[7]  
De Comité F, 2003, LECT NOTES ARTIF INT, V2734, P35
[8]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[9]  
Elisseeff A, 2002, ADV NEUR IN, V14, P681
[10]  
Getoor L., 2007, Introduction to Statistical Relational Learning