Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES)

被引:19
作者
Bell, Thomas G. [1 ,2 ]
Porter, Jack G. [2 ]
Wang, Wei-Lei [2 ]
Lawler, Michael J. [2 ]
Boss, Emmanuel [3 ]
Behrenfeld, Michael J. [4 ]
Saltzman, Eric S. [2 ]
机构
[1] Plymouth Marine Lab, Plymouth, Devon, England
[2] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[3] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA
[4] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
关键词
dimethylsulfide; North Atlantic; marine aerosol; DMS; artificial neural network; DIMETHYLSULFONIOPROPIONATE DMSP; DIMETHYLSULFIDE DMS; OCEANIC PHYTOPLANKTON; CLOUD ALBEDO; SEA-SURFACE; CLIMATOLOGY; ALGORITHM; SULFUR; BLOOM;
D O I
10.3389/fmars.2020.596763
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work presents an overview of a unique set of surface ocean dimethylsulfide (DMS) measurements from four shipboard field campaigns conducted during the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) project. Variations in surface seawater DMS are discussed in relation to biological and physical observations. Results are considered at a range of timescales (seasons to days) and spatial scales (regional to sub-mesoscale). Elevated DMS concentrations are generally associated with greater biological productivity, although chlorophyll a (Chl) only explains a small fraction of the DMS variability (15%). Physical factors that determine the location of oceanic temperature fronts and depth of vertical mixing have an important influence on seawater DMS concentrations during all seasons. The interplay of biomass and physics influences DMS concentrations at regional/seasonal scales and at smaller spatial and shorter temporal scales. Seawater DMS measurements are compared with the global seawater DMS climatology and predictions made using a recently published algorithm and by a neural network model. The climatology is successful at capturing the seasonal progression in average seawater DMS, but does not reproduce the shorter spatial/temporal scale variability. The input terms common to the algorithm and neural network approaches are biological (Chl) and physical (mixed layer depth, photosynthetically active radiation, seawater temperature). Both models predict the seasonal North Atlantic average seawater DMS trends better than the climatology. However, DMS concentrations tend to be under-predicted and the episodic occurrence of higher DMS concentrations is poorly predicted. The choice of climatological seawater DMS product makes a substantial impact on the estimated DMS flux into the North Atlantic atmosphere. These results suggest that additional input terms are needed to improve the predictive capability of current state-of-the-art approaches to estimating seawater DMS.
引用
收藏
页数:20
相关论文
共 47 条
[1]  
Baith K., 2001, Eos, Transactions, American Geophysical Union, V82, P202, DOI [10.1029/01EO00109, DOI 10.1029/01EO00109]
[2]   The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview [J].
Behrenfeld, Michael J. ;
Moore, Richard H. ;
Hostetler, Chris A. ;
Graff, Jason ;
Gaube, Peter ;
Russell, Lynn M. ;
Chen, Gao ;
Doney, Scott C. ;
Giovannoni, Stephen ;
Liu, Hongyu ;
Proctor, Christopher ;
Bolalios, Luis M. ;
Baetge, Nicholas ;
Davie-Martin, Cleo ;
Westberry, Toby K. ;
Bates, Timothy S. ;
Bell, Thomas G. ;
Bidle, Kay D. ;
Boss, Emmanuel S. ;
Brooks, Sarah D. ;
Cairns, Brian ;
Carlson, Craig ;
Halsey, Kimberly ;
Harvey, Elizabeth L. ;
Hu, Chuanmin ;
Karp-Boss, Lee ;
Kleb, Mary ;
Menden-Deuer, Susanne ;
Morison, Francoise ;
Quinn, Patricia K. ;
Scarino, Amy Jo ;
Anderson, Bruce ;
Chowdhary, Jacek ;
Crosbie, Ewan ;
Ferrare, Richard ;
Haire, Johnathan W. ;
Hu, Yongxiang ;
Janz, Scott ;
Redemann, Jens ;
Saltzman, Eric ;
Shook, Michael ;
Siegel, David A. ;
Wisthaler, Armin ;
Martine, Melissa Yang ;
Ziemba, Luke .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[3]   Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles [J].
Behrenfeld, Michael J. ;
Boss, Emmanuel S. .
GLOBAL CHANGE BIOLOGY, 2018, 24 (01) :55-77
[4]   Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms [J].
Behrenfeld, Michael J. ;
Boss, Emmanuel S. .
ANNUAL REVIEW OF MARINE SCIENCE, VOL 6, 2014, 6 :167-U208
[5]   Global oceanic DMS data inter-comparability [J].
Bell, T. G. ;
Malin, G. ;
Lee, G. A. ;
Stefels, J. ;
Archer, S. ;
Steinke, M. ;
Matrai, P. .
BIOGEOCHEMISTRY, 2012, 110 (1-3) :147-161
[6]   Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development [J].
Bracher, Astrid ;
Bouman, Heather A. ;
Brewin, Robert J. W. ;
Bricaud, Annick ;
Brotas, Vanda ;
Ciotti, Aurea M. ;
Clementson, Lesley ;
Devred, Emmanuel ;
Di Cicco, Annalisa ;
Dutkiewicz, Stephanie ;
Hardman-Mountford, Nick J. ;
Hickman, Anna E. ;
Hieronymi, Martin ;
Hirata, Takafumi ;
Losa, Svetlana N. ;
Mouw, Colleen B. ;
Organelli, Emanuele ;
Raitsos, Dionysios E. ;
Uitz, Julia ;
Vogt, Meike ;
Wolanin, Aleksandra .
FRONTIERS IN MARINE SCIENCE, 2017, 4
[7]   Large contribution of natural aerosols to uncertainty in indirect forcing [J].
Carslaw, K. S. ;
Lee, L. A. ;
Reddington, C. L. ;
Pringle, K. J. ;
Rap, A. ;
Forster, P. M. ;
Mann, G. W. ;
Spracklen, D. V. ;
Woodhouse, M. T. ;
Regayre, L. A. ;
Pierce, J. R. .
NATURE, 2013, 503 (7474) :67-+
[8]   OCEANIC PHYTOPLANKTON, ATMOSPHERIC SULFUR, CLOUD ALBEDO AND CLIMATE [J].
CHARLSON, RJ ;
LOVELOCK, JE ;
ANDREAE, MO ;
WARREN, SG .
NATURE, 1987, 326 (6114) :655-661
[9]   Overview of (Sub)mesoscale Ocean Dynamics for the NAAMES Field Program [J].
Della Penna, Alice ;
Gaube, Peter .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[10]   Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3 [J].
Fairall, C. W. ;
Yang, Mingxi ;
Bariteau, Ludovic ;
Edson, J. B. ;
Helmig, D. ;
McGillis, W. ;
Pezoa, S. ;
Hare, J. E. ;
Huebert, B. ;
Blomquist, B. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116