Algorithmic mapping from criticality to self-organized criticality

被引:16
作者
Bagnoli, F
Palmerini, P
Rechtman, R
机构
[1] UNIV FLORENCE, DIPARTIMENTO FIS, I-50125 FLORENCE, ITALY
[2] Univ Nacl Autonoma Mexico, CTR INVEST ENERGIA, TEMIXCO 62850, MORELOS, MEXICO
[3] CEA SACLAY, DRECAM SPEC, F-91191 GIF SUR YVETTE, FRANCE
[4] IST NAZL FIS NUCL, I-50125 FLORENCE, ITALY
[5] INFM, FLORENCE, ITALY
关键词
D O I
10.1103/PhysRevE.55.3970
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Probabilistic cellular automata are prototypes of nonequilibrium critical phenomena. This class of models includes among others the directed percolation problem (Domany-Kinzel model) and the dynamical Ising model. The critical properties of these models are usually obtained by fine tuning one or more control parameters as, for instance, the temperature. We present a method for the parallel evolution of the model for all the values of the control parameter, although its implementation is in general limited Co a fixed number of values. This algorithm facilitates the sketching of phase diagrams and can be useful in deriving the critical properties of the model. Since the criticality here emerges from the asymptotic distribution of some quantities, without tuning of parameters, our method is a mapping from a probabilistic cellular automaton with critical behavior to a self-organized critical model with the same critical properties.
引用
收藏
页码:3970 / 3976
页数:7
相关论文
共 25 条
  • [11] ''Self-organized'' formulation of standard percolation phenomena
    Grassberger, P
    Zhang, YC
    [J]. PHYSICA A, 1996, 224 (1-2): : 169 - 179
  • [12] KINETIC ROUGHENING PHENOMENA, STOCHASTIC GROWTH DIRECTED POLYMERS AND ALL THAT - ASPECTS OF MULTIDISCIPLINARY STATISTICAL-MECHANICS
    HALPINHEALY, T
    ZHANG, YC
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (4-6): : 215 - 415
  • [13] HERRMANN HJ, 1991, J STAT PHYS, V2, P145
  • [14] *ISI VILL GUAL, 1994, WORKSH CHAOS COMPL T
  • [15] PHASE-TRANSITIONS OF CELLULAR AUTOMATA
    KINZEL, W
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 58 (03): : 229 - 244
  • [16] COMPARATIVE-STUDY OF DAMAGE SPREADING IN THE ISING-MODEL USING HEAT-BATH, GLAUBER, AND METROPOLIS DYNAMICS
    MARIZ, AM
    HERRMANN, HJ
    DE ARCANGELIS, L
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) : 1043 - 1050
  • [17] EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICALITY
    MASLOV, S
    ZHANG, YC
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (08) : 1550 - 1553
  • [18] Avalanche dynamics in evolution, growth, and depinning models
    Paczuski, M
    Maslov, S
    Bak, P
    [J]. PHYSICAL REVIEW E, 1996, 53 (01): : 414 - 443
  • [19] CRITICALITY IN NON-LINEAR TRANSPORT-PROPERTIES OF HETEROGENEOUS MATERIALS
    ROUX, S
    HANSEN, A
    GUYON, E
    [J]. JOURNAL DE PHYSIQUE, 1987, 48 (12): : 2125 - 2130
  • [20] SORNETTE D, 1995, J PHYS I, V5, P325, DOI 10.1051/jp1:1995129