Positive periodic solutions for a neutral differential system with feedback control

被引:8
作者
Liu, Guirong [1 ]
Yan, Jurang [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Shanxi 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
positive periodic solution; neutral differential system; feedback control; fixed-point theorem; strict-set-contraction;
D O I
10.1016/j.camwa.2006.03.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Applying a fixed-point theorem of strict-set-contractions, some new criteria are established for the existence of positive periodic solutions of the following neutral differential system with feedback control dx(t)/dt = x(t) [r(t)-a(o)(t)x(t)-a(1)(t)x(t-sigma(1)(t))-a(2)(t)x'(t-sigma(2)(t))-beta(t)u(t-(T1)(t))] du(t)/dt = -a(t)u(t)+b(t)x(t-(T2)(t)). (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1988, Real analysis
[2]   FIXED-POINT THEOREMS FOR MAPPINGS IN ORDERED BANACH-SPACES [J].
CAC, NP ;
GATICA, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :547-557
[3]   The existence of positive periodic solutions for periodic feedback control systems with delays [J].
Fan, GH ;
Li, YK ;
Qin, MC .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (06) :425-430
[4]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[5]  
GOPALSAMY K, 1993, J MATH MATH SCI, V1, P177
[6]  
Guo D. J., 2001, Nonlinear Functional Analysis, Vsecond
[7]  
Khamsi MA, 2011, An Introduction to Metric Spaces and Fixed Point Theory
[8]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[9]   Positive periodic solutions for a periodic neutral differential equation with feedback control [J].
Li, YK .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (01) :145-154
[10]   Positive periodic solutions of a class of functional differential systems with feedback controls [J].
Li, YK ;
Liu, P ;
Zhu, LF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (5-6) :655-666