A Frequency-Multiplexed Coherent Electro-optic Memory in Rare Earth Doped Nanoparticles

被引:13
作者
Fossati, Alexandre [1 ]
Liu, Shuping [1 ,2 ]
Karlsson, Jenny [1 ]
Ikesue, Akio [3 ]
Tallaire, Alexandre [1 ]
Ferrier, Alban [1 ,4 ]
Serrano, Diana [1 ]
Goldner, Philippe [1 ]
机构
[1] PSL Univ, CNRS, Inst Rech Chim Paris, Chim ParisTech, F-75005 Paris, France
[2] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[3] World Lab, Nagoya, Aichi 4560023, Japan
[4] Sorbonne Univ, F-75005 Paris, France
基金
欧盟地平线“2020”;
关键词
quantum technologies; rare earth; optical materials; nanoparticles;
D O I
10.1021/acs.nanolett.0c02200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing. Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles, opening exciting possibilities over bulk materials, e.g., for enhancing coupling to light and other quantum systems, and material design. Here, we report on coherent light storage in Eu3+:Y2O3 nanoparticles using the Stark echo modulation memory (SEMM) quantum protocol. We first measure a nearly constant Stark coefficient of 50 kHz/(V/cm) across a bandwidth of 15 GHz, which is promising for broadband operation. Storage of light is then demonstrated with an effective coherence lifetime of 5 mu s. Pulses with two different frequencies are also stored, confirming frequency-multiplexing capability, and are used to demonstrate the memory high phase fidelity. These results open the way to nanoscale optical quantum memories with increased efficiency, bandwidth, and processing capabilities.
引用
收藏
页码:7087 / 7093
页数:7
相关论文
共 43 条
[1]   Proposal for a coherent quantum memory for propagating microwave photons [J].
Afzelius, M. ;
Sangouard, N. ;
Johansson, G. ;
Staudt, M. U. ;
Wilson, C. M. .
NEW JOURNAL OF PHYSICS, 2013, 15
[2]  
Afzelius M., 2015, Engineering the Atom-Photon Interaction
[3]   Stark echo modulation for quantum memories [J].
Arcangeli, A. ;
Ferrier, A. ;
Goldner, Ph. .
PHYSICAL REVIEW A, 2016, 93 (06)
[4]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[5]   Optical Line Width Broadening Mechanisms at the 10 kHz Level in Eu3+:Y2O3 Nanoparticles [J].
Bartholomew, John G. ;
Lima, Karmel de Oliveira ;
Ferrier, Alban ;
Goldner, Philippe .
NANO LETTERS, 2017, 17 (02) :778-787
[6]  
Binnemans K, 1996, HDB PHYS CHEM RARE E, P101
[7]   Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5 [J].
Boettger, Thomas ;
Thiel, C. W. ;
Cone, R. L. ;
Sun, Y. .
PHYSICAL REVIEW B, 2009, 79 (11)
[8]   Photon echo with a few photons in two-level atoms [J].
Bonarota, M. ;
Dajczgewand, J. ;
Louchet-Chauvet, A. ;
Le Gouet, J. -L ;
Chaneliere, T. .
LASER PHYSICS, 2014, 24 (09)
[9]   Optical Spin-Wave Storage in a Solid-State Hybridized Electron-Nuclear Spin Ensemble [J].
Businger, M. ;
Tiranov, A. ;
Kaczmarek, K. T. ;
Welinski, S. ;
Zhang, Z. ;
Ferrier, A. ;
Goldner, P. ;
Afzelius, M. .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[10]   Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3 [J].
Casabone, Bernardo ;
Benedikter, Julia ;
Huemmer, Thomas ;
Oehl, Franziska ;
Lima, Karmel de Oliveira ;
Haensch, Theodor W. ;
Ferrier, Alban ;
Goldner, Philippe ;
de Riedmatten, Hugues ;
Hunger, David .
NEW JOURNAL OF PHYSICS, 2018, 20