Method of limiting equations for the stability analysis of equations with infinite delay in the Carath,odory conditions: II

被引:2
作者
Druzhinina, O. V. [1 ]
Sedova, N. O.
机构
[1] Russian Acad Sci, Ctr Comp, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
FUNCTIONAL-DIFFERENTIAL EQUATIONS;
D O I
10.1134/S0012266114060019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider systems of nonautonomous nonlinear differential equations with the infinite delay. We study the stability properties and the limiting equations whose right-hand sides are defined as the limit points of some sequence in the introduced function space. By using the method of limiting equations, we obtain new sufficient conditions for the asymptotic stability of the zero solution of the considered class of equations.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 14 条
[1]  
Andreev A.S., 1998, DIFF URAVN, V34, P435
[2]   UNIFORM ASYMPTOTIC STABILITY VIA LIMITING EQUATIONS [J].
ARTSTEIN, Z .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (02) :172-189
[3]  
Druzhinina O.V., 2014, DIFF URAVN, V50, P572
[4]  
Hale J.K., 1978, Funkcial. Ekvac., V21, P11
[5]  
Hamaya Y., 1990, FUNKC EKVACIOJ-SER I, V33, P345
[6]   STABILITY PROPERTIES OF LINEAR VOLTERRA-EQUATIONS [J].
HINO, Y ;
MURAKAMI, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :121-137
[7]   STABILITY PROPERTIES FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY [J].
HINO, Y .
TOHOKU MATHEMATICAL JOURNAL, 1983, 35 (04) :597-605
[8]   Limiting equations and some stability properties for asymptotically almost periodic functional differential equations with infinite delay [J].
Hino, Y ;
Murakami, S .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (02) :239-257
[9]  
Kato J., 1978, FUNKC EKVACIOJ-SER I, V21, P63
[10]  
KATO J, 1982, LECT NOTES MATH, V1017, P300