Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth

被引:16
作者
Vera Hernandez, F. P. [1 ]
Martinez Nunez, M. [1 ]
Ruiz Rivas, M. [1 ]
Vazquez Portillo, R. E. [1 ]
Bibbins Martinez, M. D. [1 ]
Luna Suarez, S. [1 ]
Rosas Cardenas, F. de F. [1 ]
机构
[1] IPN, CIBA, Ex Hacienda San Juan Molino Carretera Estatal, Tlaxcala 90700, Mexico
关键词
Amaranth; gene expression; normalisation; quantitative real-time PCR; reference genes; CHOLESTEROL; PROTEINS; CRUENTUS; SQUALENE; BLOOD; DIET; SALT; L;
D O I
10.1111/plb.12725
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Studies of gene expression are very important for the identification of genes that participate in different biological processes. Currently, reverse transcription quantitative real-time PCR (RT-qPCR) is a high-throughput, sensitive and widely used method for gene expression analysis. Nevertheless, RT-qPCR requires precise normalisation of data to avoid the misinterpretation of experimental data. In this sense, the selection of reference genes is critical for gene expression analysis. At this time, several studies focus on the selection of reference genes in several species. However, the identification and validation of reference genes for the normalisation of RT-qPCR have not been described in amaranth. A set of seven housekeeping genes were analysed using RT-qPCR, to determine the most stable reference genes in amaranth for normalisation of gene expression analysis. Transcript stability and gene expression level of candidate reference genes were analysed in different tissues, at different developmental stages and under different types of stress. The data were compared using the geNorm, NormFinder and Bestkeeper statistical methods. The reference genes optimum for normalisation of data varied with respect to treatment. The results indicate that AhyMDH, AhyGAPDH, AhyEF-1 and AhyACT would be optimum for accurate normalisation of experimental data, when all treatment are analysed in the same experiment. This study presents the most stable reference genes for normalisation of gene expression analysis in amaranth, which will contribute significantly to future gene studies of this species.
引用
收藏
页码:713 / 721
页数:9
相关论文
共 33 条
[1]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[2]   Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides [J].
Barba de la Rosa, A. P. ;
Barba Montoya, A. ;
Martinez-Cuevas, Pedro ;
Hernandez-Ledesma, B. ;
Leon-Galvan, M. F. ;
De Leon-Rodriguez, A. ;
Gonzalez, C. .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2010, 23 (02) :106-111
[3]   Cholesterol-lowering properties of amaranth grain and oil in hamsters [J].
Berger, A ;
Gremaud, R ;
Baumgartner, M ;
Rein, D ;
Monnard, I ;
Kratky, E ;
Geiger, W ;
Burri, J ;
Dionisi, F ;
Allan, M ;
Lambelet, P .
INTERNATIONAL JOURNAL FOR VITAMIN AND NUTRITION RESEARCH, 2003, 73 (01) :39-47
[4]   Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought [J].
Bevitori, R. ;
Oliveira, M. B. ;
Grossi-de-Sa, M. F. ;
Lanna, A. C. ;
da Silveira, R. D. ;
Petrofeza, S. .
GENETICS AND MOLECULAR RESEARCH, 2014, 13 (04) :9795-9805
[5]  
Chan Oliver Yuan Wei, 2014, Electron Physician, V6, P719, DOI 10.14661/2014.719-727
[6]   Baicalin Alleviates Lipopolysaccharide-Induced Liver Inflammation in Chicken by Suppressing TLR4-Mediated NF-κB Pathway [J].
Cheng, Ping ;
Wang, Tong ;
Li, Wei ;
Muhammad, Ishfaq ;
Wang, He ;
Sun, Xiaoqi ;
Yang, Yuqi ;
Li, Jiarui ;
Xiao, Tianshi ;
Zhang, Xiuying .
FRONTIERS IN PHARMACOLOGY, 2017, 8
[7]   A comparison of the impact of amaranth flour and squalene on plasma cholesterol in mice with diet-induced dyslipidemia [J].
Chmelik, Zdenek ;
Kotolova, Hana ;
Piekutowska, Zuzana ;
Horska, Katerina ;
Bartosova, Ladislava ;
Suchy, Pavel ;
Kollar, Peter .
BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT, 2013, 126 (5-6) :251-255
[8]   The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly (vol 9, 2016) [J].
Clouse, J. W. ;
Adhikary, D. ;
Page, J. T. ;
Ramaraj, T. ;
Deyholos, M. K. ;
Udall, J. A. ;
Fairbanks, D. J. ;
Jellen, E. N. ;
Maughan, P. J. .
PLANT GENOME, 2016, 9 (03)
[9]   Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages [J].
De Spiegelaere, Ward ;
Dern-Wieloch, Jutta ;
Weigel, Roswitha ;
Schumacher, Valerie ;
Schorle, Hubert ;
Nettersheim, Daniel ;
Bergmann, Martin ;
Brehm, Ralph ;
Kliesch, Sabine ;
Vandekerckhove, Linos ;
Fink, Cornelia .
PLOS ONE, 2015, 10 (03)
[10]   Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress [J].
Delano-Frier, John P. ;
Aviles-Arnaut, Hamlet ;
Casarrubias-Castillo, Kena ;
Casique-Arroyo, Gabriela ;
Castrillon-Arbelaez, Paula A. ;
Herrera-Estrella, Luis ;
Massange-Sanchez, Julio ;
Martinez-Gallardo, Norma A. ;
Parra-Cota, Fannie I. ;
Vargas-Ortiz, Erandi ;
Estrada-Hernandez, Maria G. .
BMC GENOMICS, 2011, 12