Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations

被引:19
作者
Dong, Wende [1 ]
Tao, Shuyin [2 ]
Xu, Guili [1 ]
Chen, Yueting [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211106, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Div Informationizat Construct & Management, Nanjing, Peoples R China
[3] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310007, Peoples R China
基金
中国国家自然科学基金;
关键词
Blind image deconvolution; Poissonian blurred image; L-0-norm gradient regularization; total variation regularization; ALTERNATING MINIMIZATION ALGORITHM; AUTOMATIC DECONVOLUTION; 4PI-MICROSCOPY; RESTORATION;
D O I
10.1109/TIP.2020.3038518
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the L-0-norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.
引用
收藏
页码:1030 / 1043
页数:14
相关论文
共 53 条
[1]  
[Anonymous], 2014, BIOMED RES INT, DOI DOI 10.1155/2014/37139724729971
[2]   Tikhonov regularized Poisson likelihood estimation: theoretical justification and a computational method [J].
Bardsley, Johnathan M. ;
Laobeul, N'Djekornom .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2008, 16 (02) :199-215
[3]  
Bertero Mario, 1998, Introduction to Inverse Problems in Imaging, DOI [10.1201/9781003032755, DOI 10.1201/9781003032755]
[4]   Sparse Poisson Noisy Image Deblurring [J].
Carlavan, Mikael ;
Blanc-Feraud, Laure .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1834-1846
[5]   Regularized Generalized Inverse Accelerating Linearized Alternating Minimization Algorithm for Frame-Based Poissonian Image Deblurring [J].
Chen, Dai-Qiang .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (02) :716-739
[6]   Fast Motion Deblurring [J].
Cho, Sunghyun ;
Lee, Seungyong .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05) :1-8
[7]   Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J].
Dey, N ;
Blanc-Feraud, L ;
Zimmer, C ;
Roux, P ;
Kam, Z ;
Olivo-Marin, JC ;
Zerubia, J .
MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (04) :260-266
[8]   A piecewise local regularized Richardson-Lucy algorithm for remote sensing image deconvolution [J].
Dong, Wende ;
Feng, Huajun ;
Xu, Zhihai ;
Li, Qi .
OPTICS AND LASER TECHNOLOGY, 2011, 43 (05) :926-933
[9]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[10]   Blind Poissonian images deconvolution with framelet regularization [J].
Fang, Houzhang ;
Yan, Luxin ;
Liu, Hai ;
Chang, Yi .
OPTICS LETTERS, 2013, 38 (04) :389-391