Mechanistic model for stresses in the oxide layer formed on zirconium alloys

被引:1
作者
Gupta, I. [1 ]
Barber, J. R. [1 ]
Thouless, M. D. [1 ,2 ]
Lu, W. [1 ,2 ]
机构
[1] Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
Dislocation glide; oxidation; stress; zirconium alloys; OXIDATION; ZIRCALOY; CREEP; ZRO2; FILM;
D O I
10.1080/01495739.2019.1618759
中图分类号
O414.1 [热力学];
学科分类号
摘要
Zirconium alloys are widely used as the cladding material in pressurized-water-reactors. The oxide formed is subjected to compressive stresses, which relax over time. This may affect the protectiveness of the oxide layer by allowing crack formation. We present a mechanistic model to predict these stresses as a function of temperature and oxidation kinetics. Material parameters for elastic deformation, creep, and thermal expansion are taken from appropriate experimental studies and the resulting predictions for the evolution of the stress distributions are compared with other experimental data. Dislocation glide in the oxide is found to be the dominant mechanism of stress relaxation for temperatures below 900 K.
引用
收藏
页码:1071 / 1082
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2013, ITCON, DOI DOI 10.1016/j.jnucmat.2012.08.049
[2]   The oxidation kinetics and the structure of the oxide film on Zircaloy before and after the kinetic transition [J].
Arima, T ;
Masuzumi, T ;
Furuya, H ;
Idemitsu, K ;
Inagaki, Y .
JOURNAL OF NUCLEAR MATERIALS, 2001, 294 (1-2) :148-153
[3]   Transition of mechanisms controlling the dislocation motion in cubic ZrO2 below 700°C [J].
Baufeld, B ;
Petukhov, BV ;
Bartsch, M ;
Messerschmidt, U .
ACTA MATERIALIA, 1998, 46 (09) :3077-3085
[4]   Toward a Better Understanding of Dimensional Changes in Zircaloy-4: What is the Impact Induced by Hydrides and Oxide Layer? [J].
Blat-Yrieix, M. ;
Ambard, A. ;
Foct, F. ;
Miquet, A. ;
Beguin, S. ;
Cayet, N. .
ZIRCONIUM IN THE NUCLEAR INDUSTRY: 15TH INTERNATIONAL SYMPOSIUM, 2009, 1505 :594-+
[5]   The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends [J].
Chevalier, Jerome ;
Gremillard, Laurent ;
Virkar, Anil V. ;
Clarke, David R. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (09) :1901-1920
[6]   Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia [J].
Chokshi, AH .
SCRIPTA MATERIALIA, 2003, 48 (06) :791-796
[7]  
DONALDSON AT, 1991, AM SOC TEST MATER, V1132, P177, DOI 10.1520/STP25507S
[8]  
Douglass D.L., 1965, CORROS SCI, V5, P255
[9]  
Frost H., 1982, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
[10]   Review of stress fields in Zirconium alloys corrosion scales [J].
Guerain, M. ;
Duriez, C. ;
Grosseau-Poussard, J. L. ;
Mermoux, M. .
CORROSION SCIENCE, 2015, 95 :11-21