Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials

被引:129
|
作者
Chin, SA [1 ]
Chen, CR [1 ]
机构
[1] Texas A&M Univ, Ctr Theoret Phys, Dept Phys, College Stn, TX 77843 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 117卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1485725
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schrodinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of fast Fourier transforms. Compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications. (C) 2002 American Institute of Physics.
引用
收藏
页码:1409 / 1415
页数:7
相关论文
共 50 条
  • [1] Fourth order gradient symplectic integrator methods for solving the time-dependent Schrodinger equation
    Chin, SA
    Chen, CR
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (17): : 7338 - 7341
  • [2] Gradient symplectic algorithms for solving the radial Schrodinger equation
    Chin, SA
    Anisimov, P
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05):
  • [3] Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation
    Shen, Jing
    Sha, Wei E. I.
    Kuang, Xiaojing
    Hu, Jinhua
    Huang, Zhixiang
    Wu, Xianliang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2018, 66 : 109 - 118
  • [4] PRODUCT FORMULA ALGORITHMS FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION
    DERAEDT, H
    COMPUTER PHYSICS REPORTS, 1987, 7 (01): : 1 - 72
  • [5] Symplectic integrators tailored to the time-dependent Schrodinger equation
    Gray, SK
    Manolopoulos, DE
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (18): : 7099 - 7112
  • [6] High-oder symplectic FDTD scheme for solving time-dependent Schrodinger equation
    Shen Jing
    Wei, Sha E., I
    Huang Zhi-Xiang
    Chen Ming-Sheng
    Wu Xian-Liang
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [7] High-order symplectic FDTD scheme for solving a time-dependent Schrodinger equation
    Shen, Jing
    Sha, Wei E. I.
    Huang, Zhixiang
    Chen, Mingsheng
    Wu, Xianliang
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 480 - 492
  • [9] Solving Schrodinger equation in semiclassical regime with highly oscillatory time-dependent potentials
    Iserles, Arieh
    Kropielnicka, Karolina
    Singh, Pranav
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 564 - 584
  • [10] The Schrodinger equation with singular time-dependent potentials
    Teismann, H
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) : 705 - 722