Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials

被引:129
作者
Chin, SA [1 ]
Chen, CR [1 ]
机构
[1] Texas A&M Univ, Ctr Theoret Phys, Dept Phys, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1485725
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schrodinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of fast Fourier transforms. Compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications. (C) 2002 American Institute of Physics.
引用
收藏
页码:1409 / 1415
页数:7
相关论文
共 29 条
[1]   A fourth-order real-space algorithm for solving local Schrodinger equations [J].
Auer, J ;
Krotscheck, E ;
Chin, SA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (15) :6841-6846
[2]   EXPONENTIAL SPLIT OPERATOR METHODS FOR SOLVING COUPLED TIME-DEPENDENT SCHRODINGER-EQUATIONS [J].
BANDRAUK, AD ;
SHEN, H .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (02) :1185-1193
[3]   Splitting methods for the time-dependent Schrodinger equation [J].
Blanes, S ;
Moan, PC .
PHYSICS LETTERS A, 2000, 265 (1-2) :35-42
[4]   A COMPARISON OF NUMERICAL ALGORITHMS FOR DYNAMICAL FERMIONS [J].
CAMPOSTRINI, M ;
ROSSI, P .
NUCLEAR PHYSICS B, 1990, 329 (03) :753-764
[5]   A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS [J].
CANDY, J ;
ROZMUS, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) :230-256
[6]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348
[7]   Higher-order force gradient symplectic algorithms [J].
Chin, SA ;
Kidwell, DW .
PHYSICAL REVIEW E, 2000, 62 (06) :8746-8752
[8]   Fourth order gradient symplectic integrator methods for solving the time-dependent Schrodinger equation [J].
Chin, SA ;
Chen, CR .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (17) :7338-7341
[9]  
FEIT MD, 1983, J CHEM PHYS, V78, P301, DOI 10.1063/1.444501
[10]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433