Hybrid Machine Learning Approach For Electric Load Forecasting

被引:1
|
作者
Kao, Jui-Chieh [1 ]
Lo, Chun-Chih [1 ]
Shieh, Chin-Shiuh [1 ]
Liao, Yu-Cheng [2 ]
Liu, Jun-Wei [2 ]
Horng, Mong-Fong [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung, Taiwan
[2] Intelligent Cloud Plus Co Ltd, Kaohsiung, Taiwan
来源
IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH) | 2019年
关键词
Renewable energy; Loadforecasting; Smart grids; Machine learning;
D O I
10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00186
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity not only plays a vital role in our daily lives, but it is also extremely important in national economic and social development. Accurate electric load forecasting can help electric power industry to secure electricity supply and use scheduling to reduce waste of electricity. In this paper, we propose a novel hybrid machine learning combining long short time memory and gradient descent approach to forecast the future hourly electricity demand of northern Taiwan. Furthermore, Random forest is applied to explore the influence of temperature of each city in northern Taiwan and features of electric load and remove irrelevant factors. The experimental results confirm the effectiveness of the proposed hybrid machine learning approach. The average error percentage of load forecast is less than 2.5%.
引用
收藏
页码:1031 / 1037
页数:7
相关论文
共 50 条
  • [1] A DEEP LEARNING APPROACH TO ELECTRIC LOAD FORECASTING OF MACHINE TOOLS
    Dietrich, B.
    Walther, J.
    Chen, Y.
    Weigold, M.
    MM SCIENCE JOURNAL, 2021, 2021 : 5283 - 5290
  • [2] Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
    Kumar M.
    Pal N.
    Computers, Materials and Continua, 2023, 74 (03): : 4785 - 4799
  • [3] Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
    Kumar, Manish
    Pal, Nitai
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 4785 - 4799
  • [4] Hybrid model for microgrid short term load forecasting based on machine learning
    Khayat, Ahmed
    Kissaoui, Mohammed
    Bahatti, Lhoussaine
    Raihani, Abdelhadi
    Errakkas, Khalid
    Atifi, Youness
    IFAC PAPERSONLINE, 2024, 58 (13): : 527 - 532
  • [5] Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach
    Ul Haq, Ejaz
    Lyu, Xue
    Jia, Youwei
    Hua, Mengyuan
    Ahmad, Fiaz
    ENERGY REPORTS, 2020, 6 : 1099 - 1105
  • [6] Automated Machine Learning for Short-term Electric Load Forecasting
    Wang, Can
    Back, Thomas
    Hoos, Holger H.
    Baratchi, Mitra
    Limmer, Steffen
    Olhofer, Markus
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 314 - 321
  • [7] Comprehensive Electric load forecasting using ensemble machine learning methods
    Bhatnagar, Mansi
    Dwivedi, Vivek
    Singh, Divyanshu
    Rozinaj, Gregor
    2022 29TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2022,
  • [8] Charging Strategies for Electric Vehicles Using a Machine Learning Load Forecasting Approach for Residential Buildings in Canada
    Mohsenimanesh, Ahmad
    Entchev, Evgueniy
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [9] Very short-term load forecasting on factory level - A machine learning approach
    Walther, Jessica
    Spanier, Dario
    Panten, Niklas
    Abele, Eberhard
    26TH CIRP CONFERENCE ON LIFE CYCLE ENGINEERING (LCE), 2019, 80 : 705 - 710
  • [10] A Hybrid Approach of Solar Power Forecasting Using Machine Learning
    Bajpai, Arpit
    Duchon, Markus
    2019 3RD INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2019), 2019, : 108 - 113