Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO2

被引:6
作者
Gao, Jin [1 ]
Wang, Hui [1 ]
Feng, Kun [1 ]
Xiang, Chensheng [2 ]
Wang, Huibo [1 ]
Qi, Huihui [1 ]
Liu, Yang [1 ]
Tian, He [2 ]
Zhong, Jun [1 ]
Kang, Zhenhui [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat Lab FUNSOM, 199 Renai Rd, Suzhou 215123, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Ctr Electron Microscopy, Hangzhou 310027, Zhejiang, Peoples R China
来源
MATERIALS ADVANCES | 2020年 / 1卷 / 07期
基金
中国国家自然科学基金;
关键词
ACTIVE-SITES; REDUCTION; EFFICIENT; DIOXIDE; GRAPHENE; MONOXIDE; SHEETS; OXYGEN; ZIF-8;
D O I
10.1039/d0ma00433b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Efficient catalysts for the electrochemical CO2 reduction reaction (CO2RR) are highly required for solving the environmental crisis. However, the product selectivity and the catalyst durability for CO2RR are still big problems. Here, we synthesized ultra-small Cu atomic clusters (ACs) dispersed on an N-doped porous carbon (NPC) support (Cu ACs/NPC) for efficient and highly selective CO2RR to CO. The Cu ACs/NPC catalyst can achieve a maximum faradaic efficiency (FE) of 93.2% for CO production at a low potential of -0.5 V (vs. RHE), without any deactivation during 24 h of electrolysis. To the best of our knowledge, the Cu ACs/NPC catalyst, with high selectivity, low overpotential and excellent stability, represents one of the best Cu-based catalysts ever reported for CO2RR to CO. The favorable structure of the Cu ACs on the support means that they have large surface active sites to enhance CO2 adsorption for excellent performance. Moreover, in situ X-ray absorption spectroscopy (XAS) reveals that the Cu ACs/NPC has a tunable oxidation state, which can be easily switched between air-stable Cu2+ and highly reductive Cu-0 for efficient CO2RR. A combination of favorable structure and tunable oxidation state thus results in high activity towards the CO2RR.
引用
收藏
页码:2286 / 2292
页数:7
相关论文
共 37 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[3]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[4]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[5]   Highly Selective and Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide with Phosphate Silver-Derived Coral-like Silver [J].
Gao, Jin ;
Zhu, Cheng ;
Zhu, Mengmeng ;
Fu, Yijun ;
Huang, Hui ;
Liu, Yang ;
Kang, Zhenhui .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03) :3536-3543
[6]   Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO [J].
Geng, Zhigang ;
Kong, Xiangdong ;
Chen, Weiwei ;
Su, Hongyang ;
Liu, Yan ;
Cai, Fan ;
Wang, Guoxiong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6054-6059
[7]   Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion [J].
Guan, Bu Yuan ;
Yu, Xin Yao ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2017, 29 (47)
[8]   Electrocatalytic Alloys for CO2 Reduction [J].
He, Jingfu ;
Johnson, Noah J. J. ;
Huang, Aoxue ;
Berlinguette, Curtis P. .
CHEMSUSCHEM, 2018, 11 (01) :48-57
[9]   Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers [J].
Huang, Jianfeng ;
Mensi, Mounir ;
Oveisi, Emad ;
Mantella, Valeria ;
Buonsanti, Raffaella .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (06) :2490-2499
[10]   From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake [J].
Jiang, Hai-Long ;
Liu, Bo ;
Lan, Ya-Qian ;
Kuratani, Kentaro ;
Akita, Tomoki ;
Shioyama, Hiroshi ;
Zong, Fengqi ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11854-11857