Automatic Detection and Location of Weld Beads With Deep Convolutional Neural Networks

被引:2
|
作者
Yang, Lei [1 ]
Fan, Junfeng [2 ]
Liu, Yanhong [1 ]
Li, En [2 ]
Peng, Jinzhu [1 ]
Liang, Zize [2 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Data augmentation; deep convolutional network model; object location; samples updating; semantic segmentation; weld bead; DEFECT DETECTION; SEAM TRACKING; AL-ALLOY; LASER; SYSTEM;
D O I
10.1109/TIM.2020.3026514
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Welding quality detection is a critical link in modern manufacturing, and the weld bead location is a prerequisite for the high-precision assessment of welding quality. It is generally necessary for weld bead detection to be accomplished in the context of complex industrial environments. However, conventional detection and location methods based on specific detection conditions or prior knowledge lack accuracy and adaptability. To precisely detect and locate the weld beads in real industrial environments, a novel weld bead detection and location algorithm is proposed based on deep convolutional neural networks. Because there is no open data set of weld beads and the samples in real industrial applications are insufficient for effective model training of the deep convolutional neural network, a novel data augmentation method based on a deep semantic segmentation network is proposed to increase the sample diversity and enlarge the data set. Then, a dynamic sample updating strategy is put forward to cover more welding situations. Finally, faced with the weak-feature and weak-texture characteristics of weld beads, a simplified YOLOV3 model is proposed to realize end-to-end weld bead location. Experiments demonstrate that the proposed method could effectively satisfy the robustness and precision requirements for weld bead detection and location combined with a deep semantic segmentation network and simplified YOLOV3 model.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Automatic Detection and Location of Weld Beads with Deep Convolutional Neural Networks
    Yang, Lei
    Fan, Junfeng
    Liu, Yanhong
    Li, En
    Peng, Jinzhu
    Liang, Zize
    IEEE Transactions on Instrumentation and Measurement, 2021, 70
  • [2] Automatic Detection of Melanoma with Yolo Deep Convolutional Neural Networks
    Nie, Yali
    Sommella, Paolo
    O'Nils, Mattias
    Liguori, Consolatina
    Lundgren, Jan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [3] Automatic driver distraction detection using deep convolutional neural networks
    Hossain, Md. Uzzol
    Rahman, Md. Ataur
    Islam, Md. Manowarul
    Akhter, Arnisha
    Uddin, Md. Ashraf
    Paul, Bikash Kumar
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14
  • [4] Automatic mass detection in mammograms using deep convolutional neural networks
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Yap, Moi Hoon
    Marti, Robert
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [5] Deep Convolutional Neural Networks for Automatic Detection of Orbital Blowout Fractures
    Li, Lunhao
    Song, Xuefei
    Guo, Yucheng
    Liu, Yuchen
    Sun, Rou
    Zou, Hao
    Zhou, Huifang
    Fan, Xianqun
    JOURNAL OF CRANIOFACIAL SURGERY, 2020, 31 (02) : 400 - 403
  • [6] Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement
    Fan, Zhun
    Li, Chong
    Chen, Ying
    Di Mascio, Paola
    Chen, Xiaopeng
    Zhu, Guijie
    Loprencipe, Giuseppe
    COATINGS, 2020, 10 (02)
  • [7] Automatic apraxia detection using deep convolutional neural networks and similarity methods
    Cristina Vicedo
    Alicia Nieto-Reyes
    Santos Bringas
    Rafael Duque
    Carmen Lage
    José Luis Montaña
    Machine Vision and Applications, 2023, 34
  • [8] Automatic apraxia detection using deep convolutional neural networks and similarity methods
    Vicedo, Cristina
    Nieto-Reyes, Alicia
    Bringas, Santos
    Duque, Rafael
    Lage, Carmen
    Luis Montana, Jose
    MACHINE VISION AND APPLICATIONS, 2023, 34 (04)
  • [9] Location Embedding and Deep Convolutional Neural Networks for Next Location Prediction
    Sassi, Abdessamed
    Brahimi, Mohammed
    Bechkit, Walid
    Bachir, Abdelmalik
    2019 IEEE 44TH LOCAL COMPUTER NETWORKS (LCN) SYMPOSIUM ON EMERGING TOPICS IN NETWORKING (LCN SYMPOSIUM 2019), 2019, : 149 - 157
  • [10] Deep Convolutional Neural Networks for DGA Detection
    Catania, Carlos
    Garcia, Sebastian
    Torres, Pablo
    COMPUTER SCIENCE - CACIC 2018, 2019, 995 : 327 - 340