The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

被引:7
作者
Gutierrez, Susana [1 ]
de Laire, Andre [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Lille, CNRS, INRIA, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
基金
英国工程与自然科学研究理事会;
关键词
Landau-Lifshitz-Gilbert equation; discontinuous initial data; stability; self-similar solutions; dissipative Schrodinger equation; complex Ginzburg-Landau equation; ferromagnetic spin chain; heat-flow for harmonic maps; LINEAR PARABOLIC EQUATIONS; WELL-POSEDNESS; HEAT-FLOW; EXPANDERS; STABILITY;
D O I
10.1088/1361-6544/ab1296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global well-posedness result for the Landau-Lifshitz equation with Gilbert damping provided that the BMO semi-norm of the initial data is small. As a consequence, we deduce the existence of self-similar solutions in any dimension. In the one-dimensional case, we characterize the self-similar solutions associated with an initial data given by some (S-2-valued) step function and establish their stability. We also show the existence of multiple solutions if the damping is strong enough. Our arguments rely on the study of a dissipative quasilinear Schrodinger equation obtained via the stereographic projection and techniques introduced by Koch and Tataru.
引用
收藏
页码:2522 / 2563
页数:42
相关论文
共 36 条
[11]  
Brezis H., 1995, SELECTA MATH, V1, P197
[12]   NONUNIQUENESS FOR THE HEAT-FLOW OF HARMONIC MAPS [J].
CORON, JM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04) :335-344
[13]   PERTURBATION OF SOLITONS IN THE CLASSICAL CONTINUUM ISOTROPIC HEISENBERG SPIN SYSTEM [J].
DANIEL, M ;
LAKSHMANAN, M .
PHYSICA A, 1983, 120 (1-2) :125-152
[14]   Finite Time Singularity of the Landau-Lifshitz-Gilbert Equation [J].
Ding, Shijin ;
Wang, Changyou .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[15]   Equilibrium and glassy states of the Asakura-Oosawa and binary hard sphere mixtures: Effective fluid approach [J].
Germain, Ph. ;
Amokrane, S. .
PHYSICAL REVIEW E, 2007, 76 (03)
[16]   Selfsimilar expanders of the harmonic map flow [J].
Germain, Pierre ;
Rupflin, Melanie .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05) :743-773
[17]  
GILBERT TL, 1955, PHYS REV, V100, P1243
[18]   Formation of singularities and self-similar vortex motion under the localized induction approximation [J].
Gutiérrez, S ;
Rivas, J ;
Vega, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :927-968
[19]   Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation [J].
Gutierrez, Susana ;
de Laire, Andre .
NONLINEARITY, 2015, 28 (05) :1307-1350
[20]   SOLITON ON A VORTEX FILAMENT [J].
HASIMOTO, H .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB8) :477-&