Nanopillar Lasers Directly Grown on Silicon with Heterostructure Surface Passivation

被引:25
作者
Sun, Hao [1 ,2 ]
Ren, Fan [1 ]
Kar Wei Ng [1 ]
Tran, Thai-Truong D. [1 ]
Li, Kun [1 ]
Chang-Hasnain, Connie J. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
core-shell; nanopillars; nanowires; surface passivation; lasers; III-V compound on Si; INTERNAL QUANTUM EFFICIENCY; LIGHT-EMITTING-DIODES; SOLAR-CELLS; ROOM-TEMPERATURE; NANOWIRE LASERS; GAAS;
D O I
10.1021/nn501481u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-crystalline wurtzite InGaAs/InGaP nanopillars directly grown on a lattice-mismatched silicon substrate are demonstrated. The nanopillar growth is in a core shell manner and gives a sharp, defect-free heterostructure interface. The InGaP shell provides excellent surface passivation effect for InGaAs nanopillars, as attested by 50-times stronger photoluminescence intensities and 5-times greater enhancements in the carrier recombination lifetimes, compared to the unpassivated ones. A record value of 16.8% internal quantum efficiency for InGaAs-based nanopillars was attained with a 50-nm-thick InGaP passivation layer. A room-temperature optically pumped laser was achieved from single, as-grown InGaAs nanopillars on silicon with a record-low threshold. Superior material qualities of these InGaP-passivated InGaAs nanopillars indicate the possibility of realizing high-performance optoelectronic devices for photovoltaics, optical communication, semiconductor nanophotonics, and heterogeneous integration of III-V materials on silicon.
引用
收藏
页码:6833 / 6839
页数:7
相关论文
共 30 条
[1]   THE EFFECT OF OXYGEN ON THE PROPERTIES OF ALGAAS SOLAR-CELLS GROWN BY MOLECULAR-BEAM EPITAXY [J].
AMANO, C ;
ANDO, K ;
YAMAGUCHI, M .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (08) :2853-2856
[2]   26.1% thin-film GaAs solar cell using epitaxial lift-off [J].
Bauhuis, G. J. ;
Mulder, P. ;
Haverkamp, E. J. ;
Huijben, J. C. C. M. ;
Schermer, J. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (09) :1488-1491
[3]   Suitability of Au- and Self-Assisted GaAs Nanowires for Optoelectronic Applications [J].
Breuer, Steffen ;
Pfueller, Carsten ;
Flissikowski, Timur ;
Brandt, Oliver ;
Grahn, Holger T. ;
Geelhaar, Lutz ;
Riechert, Henning .
NANO LETTERS, 2011, 11 (03) :1276-1279
[4]   Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires [J].
Chang, Chia-Chi ;
Chi, Chun-Yung ;
Yao, Maoqing ;
Huang, Ningfeng ;
Chen, Chun-Chung ;
Theiss, Jesse ;
Bushmaker, Adam W. ;
LaLumondiere, Stephen ;
Yeh, Ting-Wei ;
Povinelli, Michelle L. ;
Zhou, Chongwu ;
Dapkus, P. Daniel ;
Cronin, Stephen B. .
NANO LETTERS, 2012, 12 (09) :4484-4489
[5]  
Chen R, 2011, NAT PHOTONICS, V5, P170, DOI [10.1038/nphoton.2010.315, 10.1038/NPHOTON.2010.315]
[6]   GaAs-Based Nanoneedle Light Emitting Diode and Avalanche Photodiode Monolithically Integrated on a Silicon Substrate [J].
Chuang, Linus C. ;
Sedgwick, Forrest G. ;
Chen, Roger ;
Ko, Wai Son ;
Moewe, Michael ;
Ng, Kar Wei ;
Tran, Thai-Truong D. ;
Chang-Hasnain, Connie .
NANO LETTERS, 2011, 11 (02) :385-390
[7]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[8]   Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon [J].
Holm, Jeppe V. ;
Jorgensen, Henrik I. ;
Krogstrup, Peter ;
Nygard, Jesper ;
Liu, Huiyun ;
Aagesen, Martin .
NATURE COMMUNICATIONS, 2013, 4
[9]   Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers [J].
Hua, Bin ;
Motohisa, Junichi ;
Kobayashi, Yasunori ;
Hara, Shinjiroh ;
Fukui, Takashi .
NANO LETTERS, 2009, 9 (01) :112-116
[10]   Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes [J].
Jahangir, Shafat ;
Banerjee, Animesh ;
Bhattacharya, Pallab .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 5, 2013, 10 (05) :812-815