ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS

被引:4
作者
Feng, Yuehong [1 ,2 ]
Wang, Shu [1 ]
Li, Xin [3 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[2] Univ Blaise Pascal, Lab Math, F-63000 Clermont Ferrand, France
[3] Xinyang Vocat & Tech Coll, Dept Math & Comp Sci, Xinyang 464000, Peoples R China
基金
中国博士后科学基金;
关键词
bipolar compressible Navier-Stokes-Maxwell system; plasmas; global smooth solutions; energy estimates; large-time behavior; CAUCHY-PROBLEM; TIME BEHAVIOR; EQUATIONS; EXISTENCE; LIMIT;
D O I
10.1016/S0252-9602(15)30030-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R-3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm parallel to.parallel to(Hs-1), while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than parallel to.parallel to(Hs-1). This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
引用
收藏
页码:955 / 969
页数:15
相关论文
共 30 条
[1]  
[Anonymous], 1970, PRINCETON MATH SERIE
[2]  
[Anonymous], 1984, INTRO PLASMA PHYS CO, DOI DOI 10.1063/1.4934714
[3]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[4]   Numerical approximation of the Euler-Maxwell model in the quasineutral limit [J].
Degond, P. ;
Deluzet, F. ;
Savelief, D. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1917-1946
[5]   GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM [J].
Duan, Renjun .
ANALYSIS AND APPLICATIONS, 2012, 10 (02) :133-197
[6]   THE CAUCHY PROBLEM ON THE COMPRESSIBLE TWO-FLUIDS EULER-MAXWELL EQUATIONS [J].
Duan, Renjun ;
Liu, Qingqing ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) :102-133
[7]   GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE [J].
Duan, Renjun .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) :375-413
[8]   The machinery of macroautophagy [J].
Feng, Yuchen ;
He, Ding ;
Yao, Zhiyuan ;
Klionsky, Daniel J. .
CELL RESEARCH, 2014, 24 (01) :24-41
[9]   Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations [J].
Feng, Yue-Hong ;
Peng, Yue-Jun ;
Wang, Shu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 :105-116
[10]  
Germain P, 2014, ANN SCI ECOLE NORM S, V47, P469