The breadth of HIV-1 neutralizing antibodies depends on the conservation of key sites in their epitopes

被引:16
作者
Bai, Hongjun [1 ,2 ]
Li, Yifan [1 ,2 ]
Michael, Nelson L. [1 ,2 ]
Robb, Merlin L. [1 ,2 ]
Rolland, Morgane [1 ,2 ]
机构
[1] Walter Reed Army Inst Res, US Mil HIV Res Program, Silver Spring, MD 20910 USA
[2] Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA
关键词
VACCINE; RESPONSES;
D O I
10.1371/journal.pcbi.1007056
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Developing HIV-1 vaccines that trigger broadly neutralizing antibodies (bnAbs) is a priority as bnAbs are considered key to elicitation of a protective immune response. To investigate whether the breadth of a neutralizing antibody (nAb) depended on the conservation of its epitope among circulating viruses, we examined Antibody:Envelope (Ab:Env) interactions and worldwide Env diversity. We found that sites corresponding to bnAb epitopes were as variable as other accessible, non-hypervariable Env sites (p = 0.50, Mann-Whitney U-test) with no significant relationship between epitope conservation and neutralization breadth (Spearman's rho = -0.44, adjusted p = 0.079). However, when accounting for key sites in the Ab:Env interaction, we showed that the broadest bnAbs targeted more conserved epitopes (Spearman's rho = -0.70, adjusted p = 5.0e-5). Neutralization breadth did not stem from the overall conservation of Ab epitopes but depended instead on the conservation of key sites of the Ab:Env interaction, revealing a mechanistic basis for neutralization breadth that could be exploited for vaccine design. Author summary So far, no HIV-1 vaccine has elicited broadly neutralizing antibodies (bnAbs) in humans. HIV-1, one of the most rapidly evolving pathogens, is remarkable for its high variability across individuals and adaptability within hosts. We tested the relationship between HIV-1 diversity and neutralization breadth. While bnAbs did not specifically target more conserved regions of HIV-1 Env, we found that the broadest bnAbs relied forcibly more on structural interactions at key sites of the Ab:Env interaction than other Abs. Understanding mechanisms underlying neutralization breadth provides guidelines to design more efficacious vaccines and antibody-based therapeutics.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies [J].
Ahmed, Yousuf ;
Tian, Meijuan ;
Gao, Yong .
AIDS RESEARCH AND THERAPY, 2017, 14
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C [J].
Binley, James M. ;
Lybarger, Elizabeth A. ;
Crooks, Emma T. ;
Seaman, Michael S. ;
Gray, Elin ;
Davis, Katie L. ;
Decker, Julie M. ;
Wycuff, Diane ;
Harris, Linda ;
Hawkins, Natalie ;
Wood, Blake ;
Nathe, Cory ;
Richman, Douglas ;
Tomaras, Georgia D. ;
Bibollet-Ruche, Frederic ;
Robinson, James E. ;
Morris, Lynn ;
Shaw, George M. ;
Montefiori, David C. ;
Mascola, John R. .
JOURNAL OF VIROLOGY, 2008, 82 (23) :11651-11668
[5]   Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design [J].
Burton, Dennis R. ;
Hangartner, Lars .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 :635-659
[6]   Antibody responses to envelope glycoproteins in HIV-1 infection [J].
Burton, Dennis R. ;
Mascola, John R. .
NATURE IMMUNOLOGY, 2015, 16 (06) :571-576
[7]   Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals [J].
Cheedarla, Narayanaiah ;
Precilla, K. Lucia ;
Babu, Hemalatha ;
Vijayan, K. K. Vidya ;
Ashokkumar, Manickam ;
Chandrasekaran, Padmapriyadarsini ;
Kailasam, Nandagopal ;
Sundaramurthi, Jagadish Chandrabose ;
Swaminathan, Soumya ;
Buddolla, Viswanath ;
Vaniambadi, S. Kalyanaraman ;
Ramanathan, V. D. ;
Hanna, Luke Elizabeth .
SCIENTIFIC REPORTS, 2017, 7
[8]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[9]   Glycoengineering HIV-1 Env creates 'supercharged' and 'hybrid' glycans to increase neutralizing antibody potency, breadth and saturation [J].
Crooks, Ema T. ;
Grimley, Samantha L. ;
Cully, Michelle ;
Osawa, Keiko ;
Dekkers, Gillian ;
Saunders, Kevin ;
Ramisch, Sebastian ;
Menis, Sergey ;
Schief, William R. ;
Doria-Rose, Nicole ;
Haynes, Barton ;
Murrell, Ben ;
Cale, Evan Mitchel ;
Pegu, Amarendra ;
Mascola, John R. ;
Vidarsson, Gestur ;
Binley, James M. .
PLOS PATHOGENS, 2018, 14 (05)
[10]  
Ditse Z, 2018, J VIROL, V92, DOI [10.1128/JVI.00878-18, 10.1128/jvi.00878-18]