Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting

被引:27
|
作者
Yan, Xiaodong [1 ]
Zheng, Mupeng [1 ]
Zhu, Mankang [1 ]
Hou, Yudong [1 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Funct Mat, Minist Educ, Fac Mat & Mfg, Beijing 100124, Peoples R China
来源
CRYSTALS | 2020年 / 10卷 / 10期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
PZT; perovskite; energy harvesting; cantilever beam; power generation; ELECTRICAL-PROPERTIES; PHASE-BOUNDARY; PERFORMANCE; MICROSTRUCTURE; EFFICIENCY; CONVERSION; POWER;
D O I
10.3390/cryst10100907
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The question as to which piezoelectric composition is favorable for energy harvesting has been addressed in the past few years. However, discussion on this topic continues. In this work, an answer is provided through a feasible method which can be used in selecting piezoelectric material. The energy harvesting behavior of hard (P4 and P8) and soft (P5 and P5H) lead zirconate titanate (PZT) ceramics was investigated. The results show that the maximum piezoelectric voltage coefficient g(33) and transduction coefficient d(33) x g(33) were obtained in P5 ceramic. Meanwhile, the power generation characteristics at low frequencies were compared by the vibration energy harvester with a cantilever beam structure. The results indicate that the energy harvester fabricated by the P5 ceramic with the maximum d(33) x g(33) values also demonstrated the best power generation characteristics. The results unambiguously demonstrate that the power density and energy conversion efficiency of the energy harvesting devices are dominated by the d(33) x g(33) value of the piezoelectric materials.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] High Energy Density Lead-Free Piezoelectric Ceramics for Energy Harvesting and Derived from a Sol-Gel Route
    Zheng, Mupeng
    Hou, Yudong
    Zhang, Lina
    Zhu, Mankang
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (19) : 3072 - 3075
  • [42] Low Frequency Vibration Energy Harvesting of Piezoelectric Vibration Systems with an Adjustable Device and Inertial Amplifier Device
    Kang, Xiaofang
    Wang, Xinzong
    Zhang, Ao
    Xia, Guanghui
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (SUPPL 1) : 713 - 737
  • [43] Effect of piezoelectric material nonlinearity on vibration-based piezoelectric energy harvesting
    Liao, Yabin
    Lan, Chunbo
    Qian, Feng
    Zuo, Lei
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVII, 2023, 12483
  • [44] Friction-induced vibration energy harvesting via a piezoelectric cantilever vibration energy collector
    Xiang, Z. Y.
    Zhang, J. K.
    Li, S. J.
    Xie, S. L.
    Liu, F. P.
    Zhu, R. D.
    He, D. K.
    TRIBOLOGY INTERNATIONAL, 2023, 189
  • [45] Z-type piezoelectric vibration energy harvesting device
    Ma T.-B.
    Chen N.-N.
    Wu X.-D.
    Du F.
    Ding Y.-J.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (09): : 1968 - 1980
  • [46] Multi-link Piezoelectric Structure for Vibration Energy Harvesting
    Aryanpur, Rameen M.
    White, Robert D.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2012, 2012, 8341
  • [47] Random Vibration Energy Harvesting by Piezoelectric Stack Charging the Battery
    Shevtsov, Sergey
    Flek, Michail
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 645 - 652
  • [48] Design of the Electromagnetic - Piezoelectric Composite Vibration Energy Harvesting System
    Sang Yingjun
    Li Man
    Wu Shangguang
    Cao Yang
    Huang Fei
    Fan Yuanyuan
    Hao Yunrong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ADVANCED DESIGN AND MANUFACTURING ENGINEERING, 2015, 39 : 2169 - 2173
  • [49] Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect
    Si, Hongyu
    Dong, Jinlu D.
    Chen, Lei
    Sun, Laizhi
    Zhang, Xiaodong
    Gao, Mintian
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2015, 14 (1-2)
  • [50] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
    Pan, Jia-Nan
    Qin, Wei-Yang
    Deng, Wang-Zheng
    Zhou, Hong-Lei
    CHINESE PHYSICS B, 2019, 28 (01)