THE FORCING HOP DOMINATION NUMBER OF A GRAPH

被引:1
作者
Anusha, D. [1 ]
Robin, S. Joseph [2 ]
机构
[1] Manonmaniam Sundaranar Univ, Tirunelveli 627012, Tamil Nadu, India
[2] Scott Christian Coll, Dept Math, Nagercoil 629003, India
来源
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS | 2020年 / 25卷 / 01期
关键词
distance; hop domination number; forcing hop domination number;
D O I
10.17654/DM025010055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a gamma(h)-set of G. A subset T of S is called a forcing subset of S if S is the unique gamma(h)-set containing T. The minimum cardinality of T is the forcing hop domination number of S and is denoted by f gamma(h)(S). The forcing hop domination number of G is f gamma(h)(G) = min{f gamma(h)(G)}, where the minimum is taken over all gamma(h)-sets of G. Some general properties satisfied by this concept are studied. It is shown for every pair a, b of integers with 0 <= a < b and b >= 2, there exists a connected graph G such that f gamma(h)(G) = a and gamma(h)(G) = b, where gamma(h)-set is minimum hop dominating set of G.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 13 条
[1]  
Chartrand G., 1997, Journal of Combinatorial Mathematics and Combinatorial Computing, V25, P161
[2]  
Chartrand G., 1999, DISCUSS MATH GRAPH T, V19, P45
[3]  
Haynes T. W, 2013, Fundamentals of Domination in Graphs
[4]   Total and forcing total edge-to-vertex monophonic number of a graph [J].
John, J. ;
Samundesvari, K. Uma .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) :134-147
[5]   THE FORCING EDGE FIXING EDGE- TO- VERTEX MONOPHONIC NUMBER OF A GRAPH [J].
John, J. ;
Samundesvari, K. Uma .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
[6]  
John J., 2012, SCIENTIA, V23, P87
[7]   The forcing near geodetic number of a graph [J].
Lenin, R. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
[8]  
Mojdeh DA, 2008, SCI IRAN, V15, P218
[9]   Hop Domination in Graphs-II [J].
Natarajan, C. ;
Ayyaswamy, S. K. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02) :187-199
[10]   THE UPPER EDGE GEODETIC NUMBER AND THE FORCING EDGE GEODETIC NUMBER OF A GRAPH [J].
Santhakumaran, A. P. ;
John, J. .
OPUSCULA MATHEMATICA, 2009, 29 (04) :427-441