A direct volume rendering visualization approach for serial PET-CT scans that preserves anatomical consistency

被引:5
作者
Jung, Younhyun [1 ]
Kim, Jinman [1 ]
Bi, Lei [1 ]
Kumar, Ashnil [1 ]
Feng, David Dagan [1 ,2 ]
Fulham, Michael [3 ,4 ]
机构
[1] Univ Sydney, Sch Comp Sci, Biomed & Multimedia Informat Technol Res Grp, Sydney, NSW, Australia
[2] Shanghai Jiao Tong Univ, Med X Res Inst, Shanghai, Peoples R China
[3] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia
[4] Royal Prince Alfred Hosp, Dept Mol Imaging, Sydney, NSW, Australia
关键词
Direct volume rendering; PET-CT visualization; Transfer function; Serial segmentation; CELLULAR-AUTOMATA; SEGMENTATION;
D O I
10.1007/s11548-019-01916-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeOur aim was to develop an interactive 3D direct volume rendering (DVR) visualization solution to interpret and analyze complex, serial multi-modality imaging datasets from positron emission tomography-computed tomography (PET-CT).MethodsOur approach uses: (i) a serial transfer function (TF) optimization to automatically depict particular regions of interest (ROIs) over serial datasets with consistent anatomical structures; (ii) integration of a serial segmentation algorithm to interactively identify and track ROIs on PET; and (iii) parallel graphics processing unit (GPU) implementation for interactive visualization.ResultsOur DVR visualization more easily identifies changes in ROIs in serial scans in an automated fashion and parallel GPU computation which enables interactive visualization.ConclusionsOur approach provides a rapid 3D visualization of relevant ROIs over multiple scans, and we suggest that it can be used as an adjunct to conventional 2D viewing software from scanner vendors.
引用
收藏
页码:733 / 744
页数:12
相关论文
共 18 条
  • [1] Akiba H, 2006, P EUROVIS 06
  • [2] Visibility Histograms and Visibility-Driven Transfer Functions
    Correa, Carlos D.
    Ma, Kwan-Liu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (02) : 192 - 204
  • [3] Segmentation of lymphoma tumor in PET images using cellular automata: A preliminary study
    Desbordes, P.
    Petitjean, C.
    Ruan, S.
    [J]. IRBM, 2016, 37 (01) : 3 - 10
  • [4] Tumor-Cut: Segmentation of Brain Tumors on Contrast Enhanced MR Images for Radiosurgery Applications
    Hamamci, Andac
    Kucuk, Nadir
    Karaman, Kutlay
    Engin, Kayihan
    Unal, Gozde
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) : 790 - 804
  • [5] Visibility-driven PET-CT visualisation with region of interest (ROI) segmentation
    Jung, Younhyun
    Kim, Jinman
    Eberl, Stefan
    Fulham, Micheal
    Feng, David Dagan
    [J]. VISUAL COMPUTER, 2013, 29 (6-8) : 805 - 815
  • [6] Kim J, 2008, P EMBC 08
  • [7] elastix: A Toolbox for Intensity-Based Medical Image Registration
    Klein, Stefan
    Staring, Marius
    Murphy, Keelin
    Viergever, Max A.
    Pluim, Josien P. W.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) : 196 - 205
  • [8] Kniss J, 2001, P IEEE VIS 01
  • [9] Convergence properties of the Nelder-Mead simplex method in low dimensions
    Lagarias, JC
    Reeds, JA
    Wright, MH
    Wright, PE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) : 112 - 147
  • [10] An Effective Approach of Lesion Segmentation Within the Breast Ultrasound Image Based on the Cellular Automata Principle
    Liu, Yan
    Cheng, H. D.
    Huang, Jianhua
    Zhang, Yingtao
    Tang, Xianglong
    [J]. JOURNAL OF DIGITAL IMAGING, 2012, 25 (05) : 580 - 590