A Second Order Cell-Centered Scheme for Lagrangian Hydrodynamics

被引:0
作者
Corot, Theo [1 ]
机构
[1] Conservatoire Natl Arts & Metiers, Dept IMATH, 2 Rue Conte, F-75003 Paris, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS | 2017年 / 200卷
关键词
Lagrangian hydrodynamics; Godunov scheme; High-order finite volume method; COMPRESSIBLE FLOW; DYNAMICS;
D O I
10.1007/978-3-319-57394-6_5
中图分类号
O414.1 [热力学];
学科分类号
摘要
We describe a high-order cell-centered Godunov type scheme for Lagrangian hydrodynamics on general unstructured meshes using nodal fluxes. The nodal solver only depends on the angular repartition of the physical variables around the node. A second order extension of the scheme, using a linear reconstruction and a Runge-Kutta method is described.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 15 条
[1]  
[Anonymous], PHYSOR 2000
[2]  
Barth T., 1989, 27 AER SCI M, P366
[3]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394
[4]   Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR) [J].
Burton, D. E. ;
Morgan, N. R. ;
Carney, T. C. ;
Kenamond, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 :229-280
[5]   A cell-centered Lagrangian Godunov-like method for solid dynamics [J].
Burton, D. E. ;
Carney, T. C. ;
Morgan, N. R. ;
Sambasivan, S. K. ;
Shashkov, M. J. .
COMPUTERS & FLUIDS, 2013, 83 :33-47
[6]   A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension [J].
Carre, G. ;
Del Pino, S. ;
Despres, B. ;
Labourasse, E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) :5160-5183
[7]   Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates [J].
Cheng, Juan ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 :245-265
[8]   Positivity-preserving Lagrangian scheme for multi-material compressible flow [J].
Cheng, Juan ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :143-168
[9]  
Corot T., 2016, J COMPUTATIONA UNPUB
[10]   Lagrangian gas dynamics in two dimensions and Lagrangian systems [J].
Després, B ;
Mazeran, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (03) :327-372