Exact β-function of Yang-Mills theory in 2+1 dimensions

被引:1
|
作者
Romatschke, Paul [1 ,2 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
关键词
Lattice field theory simulation; Non-perturbative renormalization;
D O I
10.1007/JHEP03(2020)174
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
To set the stage, I discuss the beta-function of the massless O(N) model in three dimensions, which can be calculated exactly in the large N limit. Then, I consider SU(N) Yang-Mills theory in 2+1 space-time dimensions. Relating the beta-function to the expectation value of the action in lattice gauge theory, and the latter to the trace of the energy-momentum tensor, I show that dlng(2)/mu/dln mu = -1 for all g and all N in one particular renormalization scheme. As a consequence, I find that the Yang-Mills beta-function in three dimensions must have the same sign for all finite and positive bare coupling parameters in any renormalization scheme, and all non-trivial infrared fixed points are unreachable in practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Yang-Mills theory, from 2+1 to 3+1 dimensions
    Nair, VP
    QUANTUM THEORY AND SYMMETRIES, 2004, : 256 - 261
  • [12] A Monte Carlo approach for SU(2) Yang-Mills theory in (2+1) dimensions
    Hamer, CJ
    Sheppeard, M
    Zheng, WH
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1996, 22 (09) : 1303 - 1313
  • [13] Quantum effective action, wave functions, and Yang-Mills theory in (2+1) dimensions
    Nair, V. P.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [14] Casimir Effect in Yang-Mills Theory in D=2+1
    Chernodub, M. N.
    Goy, V. A.
    Molochkov, A., V
    Ha Huu Nguyen
    PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [15] Dimensional reduction and the Yang-Mills vacuum state in 2+1 dimensions
    Greensite, J.
    Olejnik, S. .
    PHYSICAL REVIEW D, 2008, 77 (06):
  • [16] Yang-Mills vacuum in Coulomb gauge in D=2+1 dimensions
    Feuchter, C.
    Reinhardt, H.
    PHYSICAL REVIEW D, 2008, 77 (08):
  • [17] On the deconfining limit in (2+1)-dimensional Yang-Mills theory
    Abe, Yasuhiro
    NUCLEAR PHYSICS B, 2010, 828 (1-2) : 215 - 232
  • [18] Extremal curves in (2+1)-dimensional Yang-Mills theory
    Orland, P
    Semenoff, GW
    NUCLEAR PHYSICS B, 2000, 576 (1-3) : 627 - 654
  • [19] Revisiting the deconfinement phase transition in SU(4) Yang-Mills theory in 2+1 dimensions
    Holland, Kieran
    Pepe, Michele
    Wiese, Uwe -Jens
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):