Genome variation discovery with high-throughput sequencing data

被引:47
|
作者
Dalca, Adrian V. [2 ]
Brudno, Michael [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[2] MIT, Cambridge, MA 02139 USA
关键词
high-throughput sequencing; genome variation; personal genomics; HUMAN RESEQUENCING DATA; STRUCTURAL VARIATION; SHORT-READ; SNP DETECTION; COPY-NUMBER; LOCAL ALIGNMENT; DNA-SEQUENCE; PROGRAM; IDENTIFICATION; ALGORITHMS;
D O I
10.1093/bib/bbp058
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of high-throughput sequencing (HTS) technologies is enabling sequencing of human genomes at a significantly lower cost. The availability of these genomes is hoped to enable novel medical diagnostics and treatment, specific to the individual, thus launching the era of personalized medicine. The data currently generated by HTS machines require extensive computational analysis in order to identify genomic variants present in the sequenced individual. In this paper, we overview HTS technologies and discuss several of the plethora of algorithms and tools designed to analyze HTS data, including algorithms for read mapping, as well as methods for identification of single-nucleotide polymorphisms, insertions/deletions and large-scale structural variants and copy-number variants from these mappings.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [31] Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery
    Peterson, DG
    Schulze, SR
    Sciara, EB
    Lee, SA
    Bowers, JE
    Nagel, A
    Jiang, N
    Tibbitts, DC
    Wessler, SR
    Paterson, AH
    GENOME RESEARCH, 2002, 12 (05) : 795 - 807
  • [32] A high-throughput Sanger strategy for human mitochondrial genome sequencing
    Lyons, Elizabeth A.
    Scheible, Melissa K.
    Sturk-Andreaggi, Kimberly
    Irwin, Jodi A.
    Just, Rebecca S.
    BMC GENOMICS, 2013, 14
  • [33] A high-throughput Sanger strategy for human mitochondrial genome sequencing
    Elizabeth A Lyons
    Melissa K Scheible
    Kimberly Sturk-Andreaggi
    Jodi A Irwin
    Rebecca S Just
    BMC Genomics, 14
  • [34] High-throughput genome sequencing facility: Implementing NovaSeq(s)
    Gerber, Z.
    Tassin, J.
    Jobard, F.
    Sandron, F.
    Delafoy, D.
    Meslage, S.
    Septier, G.
    Baulard, C.
    Perrier, J.
    Derbala, D.
    Menard, E.
    Besse, C.
    Lechner, D.
    Garnier, J.
    Fin, B.
    Jakoby, E.
    Gavory, F.
    Bacq-Daian, D.
    Meyer, V.
    Boland, A.
    Deleuze, J.
    Olaso, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 604 - 604
  • [35] Using high-throughput sequencing transcriptome data for INDEL detection: challenges for cancer drug discovery
    Wajnberg, Gabriel
    Passetti, Fabio
    EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (03) : 257 - 268
  • [36] Understanding human genetic variation in the era of high-throughput sequencing
    Knight, Julian C.
    EMBO REPORTS, 2010, 11 (09) : 650 - 652
  • [37] Comparison of high-throughput sequencing data compression tools
    Numanagic, Ibrahim
    Bonfield, James K.
    Hach, Faraz
    Voges, Jan
    Ostermann, Joern
    Alberti, Claudio
    Mattavelli, Marco
    Sahinalp, S. Cenk
    NATURE METHODS, 2016, 13 (12) : 1005 - +
  • [38] Need for speed in high-throughput sequencing data analysis
    Pluss, M.
    Caspar, S. M.
    Meienberg, J.
    Kopps, A. M.
    Keller, I.
    Bruggmann, R.
    Vogel, M.
    Matyas, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 721 - 722
  • [39] Comparison of high-throughput sequencing data compression tools
    Ibrahim Numanagić
    James K Bonfield
    Faraz Hach
    Jan Voges
    Jörn Ostermann
    Claudio Alberti
    Marco Mattavelli
    S Cenk Sahinalp
    Nature Methods, 2016, 13 : 1005 - 1008
  • [40] Quality assessment and control of high-throughput sequencing data
    Watson, Mick
    FRONTIERS IN GENETICS, 2014, 5