Genome variation discovery with high-throughput sequencing data

被引:47
|
作者
Dalca, Adrian V. [2 ]
Brudno, Michael [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[2] MIT, Cambridge, MA 02139 USA
关键词
high-throughput sequencing; genome variation; personal genomics; HUMAN RESEQUENCING DATA; STRUCTURAL VARIATION; SHORT-READ; SNP DETECTION; COPY-NUMBER; LOCAL ALIGNMENT; DNA-SEQUENCE; PROGRAM; IDENTIFICATION; ALGORITHMS;
D O I
10.1093/bib/bbp058
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of high-throughput sequencing (HTS) technologies is enabling sequencing of human genomes at a significantly lower cost. The availability of these genomes is hoped to enable novel medical diagnostics and treatment, specific to the individual, thus launching the era of personalized medicine. The data currently generated by HTS machines require extensive computational analysis in order to identify genomic variants present in the sequenced individual. In this paper, we overview HTS technologies and discuss several of the plethora of algorithms and tools designed to analyze HTS data, including algorithms for read mapping, as well as methods for identification of single-nucleotide polymorphisms, insertions/deletions and large-scale structural variants and copy-number variants from these mappings.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [1] Genome reassembly with high-throughput sequencing data
    Nathaniel Parrish
    Benjamin Sudakov
    Eleazar Eskin
    BMC Genomics, 14
  • [2] Genome reassembly with high-throughput sequencing data
    Parrish, Nathaniel
    Sudakov, Benjamin
    Eskin, Eleazar
    BMC GENOMICS, 2013, 14
  • [3] Savant: genome browser for high-throughput sequencing data
    Fiume, Marc
    Williams, Vanessa
    Brook, Andrew
    Brudno, Michael
    BIOINFORMATICS, 2010, 26 (16) : 1938 - 1944
  • [4] High-throughput sequencing of the melanoma genome
    Kunz, Manfred
    Dannemann, Michael
    Kelso, Janet
    EXPERIMENTAL DERMATOLOGY, 2013, 22 (01) : 10 - 17
  • [5] Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae
    Studholme, David J.
    MOLECULAR PLANT PATHOLOGY, 2011, 12 (08) : 829 - 838
  • [7] ROLE OF HIGH-THROUGHPUT SEQUENCING TECHNOLOGIES IN GENOME SEQUENCING
    Chaitanya, K. V.
    Alikhan, Akbar P.
    Reddy, V. Prasanth
    Lakhtakia, Rishabh
    Ramji, M. Taraka
    INTERNATIONAL JOURNAL OF ADVANCED BIOTECHNOLOGY AND RESEARCH, 2010, 1 (02): : 120 - 129
  • [8] Optimizing depth and type of high-throughput sequencing data for microsatellite discovery
    Chapman, Mark A.
    APPLICATIONS IN PLANT SCIENCES, 2019, 7 (11):
  • [9] SNP discovery by high-throughput sequencing in soybean
    Xiaolei Wu
    Chengwei Ren
    Trupti Joshi
    Tri Vuong
    Dong Xu
    Henry T Nguyen
    BMC Genomics, 11
  • [10] SNP discovery by high-throughput sequencing in soybean
    Wu, Xiaolei
    Ren, Chengwei
    Joshi, Trupti
    Vuong, Tri
    Xu, Dong
    Nguyen, Henry T.
    BMC GENOMICS, 2010, 11