Synthesis and Optical Properties of Vertically Aligned ZnO Nanorods

被引:15
作者
Tang, B. [1 ]
Deng, H. [2 ]
Shui, Z. W. [1 ]
Zhang, Q. [1 ]
机构
[1] SW Petr Univ, Sch Sci, Chengdu 610500, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
关键词
ZnO Nanorods; Epitaxial Relations; Photoluminescence; Exciton; EPITAXIAL-GROWTH; FIELD-EMISSION; NANOWIRES;
D O I
10.1166/jnn.2010.2113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnO nanorods were grown on an n-type silicon (111) substrate with the assistance of Au catalyst by chemical vapor deposition (CVD). The ZnO nanorods were about 200 nm diameter with uniform lengths of about 1.2 mu m. The ZnO nanorods exhibited [0001] orientation. ZnO nanorods grow in dense arrays perpendicular to the (111)-plane of silicon due to [0001](ZnO) parallel to [111](Si), [2 (1) over bar(1) over bar parallel to [1 (1) over bar0](Si), [(1) over bar2 (1) over bar0](ZnO) parallel to [(1) over bar 01](Si) and [(1) over bar(1) over bar 20](ZnO) parallel to [01 (1) over bar](Si) epitaxy. Room-temperature photoluminescence (PL) measurements show three near band-edge emission peak at 377, 379, 389 rim. These peaks are attributed to exciton transitions. Analysis indicates that the band gap of ZnO nanorods is 3.301 eV and exciton binding energy is 0.114 eV.
引用
收藏
页码:1842 / 1845
页数:4
相关论文
共 20 条
[1]   Optically pumped lasing of ZnO at room temperature [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Koyama, S ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2230-2232
[2]   Epitaxial growth of ZnO nanowires on a- and c-plane sapphire [J].
Baxter, JB ;
Aydil, ES .
JOURNAL OF CRYSTAL GROWTH, 2005, 274 (3-4) :407-411
[3]   Field emission characteristics of iridium oxide tips [J].
Chalamala, BR ;
Reuss, RH ;
Dean, KA ;
Sosa, E ;
Golden, DE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6141-6146
[4]   Uniaxial locked epitaxy of ZnO on the a face of sapphire [J].
Fons, P ;
Iwata, K ;
Yamada, A ;
Matsubara, K ;
Niki, S ;
Nakahara, K ;
Tanabe, T ;
Takasu, H .
APPLIED PHYSICS LETTERS, 2000, 77 (12) :1801-1803
[5]   Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties [J].
Ham, H ;
Shen, GZ ;
Cho, JH ;
Lee, TJ ;
Seo, SH ;
Lee, CJ .
CHEMICAL PHYSICS LETTERS, 2005, 404 (1-3) :69-73
[6]   Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires [J].
Hsu, HC ;
Hsieh, WF .
SOLID STATE COMMUNICATIONS, 2004, 131 (06) :371-375
[7]   Nanoribbon waveguides for subwavelength photonics integration [J].
Law, M ;
Sirbuly, DJ ;
Johnson, JC ;
Goldberger, J ;
Saykally, RJ ;
Yang, PD .
SCIENCE, 2004, 305 (5688) :1269-1273
[8]   Field emission from well-aligned zinc oxide nanowires grown at low temperature [J].
Lee, CJ ;
Lee, TJ ;
Lyu, SC ;
Zhang, Y ;
Ruh, H ;
Lee, HJ .
APPLIED PHYSICS LETTERS, 2002, 81 (19) :3648-3650
[9]   Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process [J].
Li, SY ;
Lee, CY ;
Tseng, TY .
JOURNAL OF CRYSTAL GROWTH, 2003, 247 (3-4) :357-362
[10]   Growth mechanism and growth habit of oxide crystals [J].
Li, WJ ;
Shi, EW ;
Zhong, WZ ;
Yin, ZW .
JOURNAL OF CRYSTAL GROWTH, 1999, 203 (1-2) :186-196