Asymptotic analysis for bifurcating autoregressive processes via a martingale approach

被引:24
|
作者
Bercu, Bernard [1 ,2 ]
de Saporta, Benoite [1 ,2 ]
Gegout-Petit, Anne [2 ]
机构
[1] Univ Bordeaux, IMB, CNRS, GREThA,UMR 5113,UMR 5251, Bordeaux, France
[2] INRIA Bordeaux, Team CQFD, Bordeaux, France
来源
关键词
bifurcating autoregressive process; tree-indexed times series; martingales; least squares estimation; almost sure convergence; quadratic strong law; central limit theorem; MODELS;
D O I
10.1214/EJP.v14-717
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behavior of the least squares estimators of the unknown parameters of general pth-order bifurcating autoregressive processes. Under very weak assumptions on the driven noise of the process, namely conditional pair-wise independence and suitable moment conditions, we establish the almost sure convergence of our estimators together with the quadratic strong law and the central limit theorem. All our analysis relies on non-standard asymptotic results for martingales.
引用
收藏
页码:2492 / 2526
页数:35
相关论文
共 50 条