A note on equi-integrability in dimension reduction problems

被引:8
作者
Braides, Andrea
Zeppieri, Caterina Ida
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
D O I
10.1007/s00526-006-0065-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of the asymptotic analysis of thin structures, we prove that, up to an extraction, it is possible to decompose a sequence of 'scaled gradients' (del(alpha)u(epsilon)vertical bar(1)/(epsilon)del(beta)u(epsilon)) (where is the gradient in the k-dimensional 'thin variable' x(beta)) bounded in L-p (Omega:R-mxn(1 < p < + infinity) as a sum of a sequence (del(alpha)v(epsilon)vertical bar(1)/(epsilon)del(beta)nu(epsilon)) whose p-th power is equi-integrable on Omega and a 'rest' that converges to zero in measure. In particular, for k = 1 we recover a well-known result for thin films by Bocea and Fonseca (ESAIM: COCV 7:443-470; 2002).
引用
收藏
页码:231 / 238
页数:8
相关论文
共 12 条
[1]   A VARIATIONAL DEFINITION OF THE STRAIN-ENERGY FOR AN ELASTIC STRING [J].
ACERBI, E ;
BUTTAZZO, G ;
PERCIVALE, D .
JOURNAL OF ELASTICITY, 1991, 25 (02) :137-148
[2]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[3]  
Adams A, 2003, SOBOLEV SPACES
[4]   Equi-integrability results for 3D-2D dimension reduction problems [J].
Bocea, M ;
Fonseca, I .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (19) :443-470
[5]  
Braides A, 2000, INDIANA U MATH J, V49, P1367
[6]  
Braides A., 2002, Convergence for Beginners
[7]  
Dellacherie C., 1975, Probabilites et potentiel
[8]   Analysis of concentration and oscillation effects generated by gradients [J].
Fonseca, I ;
Muller, S ;
Pedregal, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (03) :736-756
[9]  
KRISTENSEN J, 1994, FINITE FUNCTIONALS Y
[10]   Modeling heterogeneous martensitic wires [J].
Le Dret, H ;
Meunier, N .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (03) :375-406