Evaluation of Particle Swarm Optimisation for Medical Image Segmentation

被引:9
作者
Ryalat, Mohammad Hashem [1 ]
Emmens, Daniel [2 ]
Hulse, Mark [4 ]
Bell, Duncan [4 ]
Al-Rahamneh, Zainab [3 ]
Laycock, Stephen [1 ]
Fisher, Mark [1 ]
机构
[1] Univ East Anglia, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[2] Ipswich Hosp NHS Trust, Dept Clin Oncol, Ipswich, Suffolk, England
[3] AlBalqa Appl Univ, Dept Comp Informat Syst, Salt, Jordan
[4] Univ Campus Suffolk, Fac Hlth & Sci, Ipswich, Suffolk, England
来源
ADVANCES IN SYSTEMS SCIENCE, ICSS 2016 | 2017年 / 539卷
关键词
Particle swarm optimisation; Medical image segmentation; Volume reconstruction; ALGORITHMS;
D O I
10.1007/978-3-319-48944-5_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Otsu's criteria is a popular image segmentation approach that selects a threshold to maximise the inter-class variance of the distribution of intensity levels in the image. The algorithm finds the optimum threshold by performing an exhaustive search, but this is time-consuming, particularly for medical images employing 16-bit quantisation. This paper investigates particle swarm optimisation (PSO), Darwinian PSO and Fractional Order Darwinian PSO to speed up the algorithm. We evaluate the algorithms in medical imaging applications concerned with volume reconstruction, with a particular focus on addressing artefacts due to immobilisation masks, commonly worn by patients undergoing radiotherapy treatment for head-and-neck cancer. We find that the Fractional-Order Darwinian PSO algorithm outperforms other PSO algorithms in terms of accuracy, stability and speed which makes it the favourite choice when the accuracy and time-of-execution are a concern.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 19 条
  • [1] Ait-Aoudia S, 2014, IEEE INT CONF INF VI, P287, DOI 10.1109/IV.2014.68
  • [2] [Anonymous], J COMPUTING CULTURAL
  • [3] [Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
  • [4] Chen W, 2008, PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 7, P348, DOI 10.1109/CHICC.2008.4605745
  • [5] Introducing the fractional-order Darwinian PSO
    Couceiro, Micael S.
    Rocha, Rui P.
    Fonseca Ferreira, N. M.
    Tenreiro Machado, J. A.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 343 - 350
  • [6] Eberhart R., 2002, MHS95 P 6 INT S MICR, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
  • [7] Automatic segmentation of non-enhancing brain tumors in magnetic resonance images
    Fletcher-Heath, LM
    Hall, LO
    Goldgof, DB
    Murtagh, FR
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2001, 21 (1-3) : 43 - 63
  • [8] Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization
    Ghamisi, Pedram
    Couceiro, Micael S.
    Martins, Fernando M. L.
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2382 - 2394
  • [9] Gorunescu F, 2007, PROC WRLD ACAD SCI E, V25, P427
  • [10] Bio-inspired Algorithms for Autonomous Deployment and Localization of Sensor Nodes
    Kulkarni, Raghavendra V.
    Venayagamoorthy, Ganesh Kumar
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (06): : 663 - 675