Warped Product Minimal Lagrangian Immersions in Complex Projective Space

被引:4
作者
Rodriguez Montealegre, Cristina [1 ]
Vrancken, Luc [2 ,3 ,4 ]
机构
[1] Univ Jaen, Dept Matemat, Escuela Politecn Super, E-23071 Jaen, Spain
[2] Univ Lille Nord France, F-59000 Lille, France
[3] LAMAV, UVHC, F-59313 Valenciennes, France
[4] Katholieke Univ Leuven, Dept Wiskunde, BE-3001 Louvain, Belgium
关键词
Lagrangian submanifold; complex projective space; warped product; minimal submanifold; TOTALLY-REAL SUBMANIFOLDS; EQUALITY; FORMS;
D O I
10.1007/s00025-009-0439-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There exists a well known construction which allows to associate with two Lagrangian immersions f(i) : M-i -> CPni (4), i = 1, 2 a family of new Lagrangian immersion from I x M-1 x M-2 into CPn1+n2+1 (4). Each member of the family is determined by a horizontal curve in S-3 (1). In this paper we continue to deal with the inverse problem: how to determine from properties of the second fundamental form whether a given Lagrangian immersion of M -> CPn (4) can be locally decomposed in such a way.
引用
收藏
页码:405 / 420
页数:16
相关论文
共 11 条
[1]   Lagrangian submanifolds attaining equality in the improved Chen's inequality [J].
Bolton, J. ;
Vrancken, L. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (02) :311-315
[2]   From surfaces in the 5-sphere to 3-manifolds in complex projective 3-space [J].
Bolton, J ;
Scharlach, C ;
Vrancken, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) :465-475
[3]  
BOLTON J, 2001, P 5 PAC RIM GEOM C T, V20, P23
[4]   Hamiltonian-minimal Lagrangian submanifolds in complex space forms [J].
Castro, Ildefonso ;
Li, Haizhong ;
Urbano, Francisco .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) :43-63
[5]   TOTALLY REAL SUBMANIFOLDS [J].
CHEN, BY ;
OGIUE, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 193 (JUN) :257-266
[6]   TOTALLY-REAL SUBMANIFOLDS OF CPN SATISFYING A BASIC EQUALITY [J].
CHEN, BY ;
DILLEN, F ;
VERSTRAELEN, L ;
VRANCKEN, L .
ARCHIV DER MATHEMATIK, 1994, 63 (06) :553-564
[7]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[8]   An exotic totally real minimal immersion of S-3 in CP3 and its characterisation [J].
Chen, BY ;
Dillen, F ;
Verstraelen, L ;
Vrancken, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :153-165
[10]  
OPREA T, 2005, ARXIVMATHDG0511087