A continuity property of multivariate Lagrange interpolation

被引:18
作者
Bloom, T [1 ]
Calvi, JP [1 ]
机构
[1] UNIV TOULOUSE 3, UFR MIG, MATH LAB, F-31062 TOULOUSE, FRANCE
关键词
multivariable Lagrange interpolants; interpolation schemes in R-n; Kergin interpolation;
D O I
10.1090/S0025-5718-97-00858-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {S-t} be a sequence of interpolation schemes in R-n of degree d (i.e. for each St one has unique interpolation by a polynomial of total degree less than or equal to d) and total order less than or equal to l. Suppose that the points of S-t tend to 0 epsilon R-n as t --> infinity and the Lagrange-Hermite interpolants, H-S?t satisfy lim(t-->infinity) HSt (x(alpha)) = 0 for all monomials x(alpha) with \alpha\ = d + 1. Theorem: lim(t-->infinity) H-S?t(f) = T-d(f) for all functions f of class Cl-1 in a neighborhood of 0. (Here T-d(f) denotes the Taylor series of f at 0 to order d.) Specific examples are given to show the optimality of this result.
引用
收藏
页码:1561 / 1577
页数:17
相关论文
共 13 条
[1]  
[Anonymous], INTRO COMPLEX ANAL S
[2]   INTERPOLATION AT DISCRETE SUBSETS OF CN [J].
BLOOM, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :1223-1243
[3]   ON CERTAIN CONFIGURATIONS OF POINTS IN RN WHICH ARE UNISOLVENT FOR POLYNOMIAL INTERPOLATION [J].
BOS, L .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (03) :271-280
[4]   POLYNOMIAL INTERPOLATION WITH PRESCRIBED ANALYTIC FUNCTIONALS [J].
CALVI, JP .
JOURNAL OF APPROXIMATION THEORY, 1993, 75 (02) :136-156
[5]  
Ciarlet P.G., 1972, ARCH RATION MECH AN, V46, P177, DOI [DOI 10.1007/BF00252458, 10.1007/BF00252458, /10.1007/BF00252458]
[6]  
Coatmelec C., 1966, ANN SCI ECOLE NORM S, V83, P271, DOI [10.24033/asens.1157, DOI 10.24033/ASENS.1157]
[7]   A NATURAL INTERPOLATION OF CK FUNCTIONS [J].
KERGIN, P .
JOURNAL OF APPROXIMATION THEORY, 1980, 29 (04) :278-293
[8]  
LEE SL, 1995, NATO ADV SCI INST SE, V454, P177
[9]  
LORENTZ RA, LECT NOTES MATH, V1516
[10]  
MICCHELLI CA, 1980, ROCKY MOUNTAIN J MAT, V10, P485