Sparse network estimation for dynamical spatio-temporal array models

被引:1
作者
Lund, Adam [1 ]
Hansen, Niels Richard [1 ]
机构
[1] Kobenhavn Univ, Inst Matemat Fag, Univ Pk 5, DK-2100 Copenhagen O, Denmark
关键词
GLAM; Non-differentiable regularization; Stochastic functional differential equation; VSD imaging data; EQUATIONS; PROPAGATION; REGRESSION;
D O I
10.1016/j.jmva.2019.104532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Neural field models represent neuronal communication on a population level via synaptic weight functions. Using voltage sensitive dye (VSD) imaging it is possible to obtain measurements of neural fields with a relatively high spatial and temporal resolution. The synaptic weight functions represent functional connectivity in the brain and give rise to a spatio-temporal dependence structure. We present a stochastic functional differential equation for modeling neural fields, which leads to a vector autoregressive model of the data via basis expansions of the synaptic weight functions and time and space discretization. Fitting the model to data is a practical challenge as this represents a large scale regression problem. By using a 1-norm penalty in combination with localized basis functions it is possible to learn a sparse network representation of the functional connectivity of the brain, but still, the explicit construction of a design matrix can be computationally prohibitive. We demonstrate that by using tensor product basis expansions, the computation of the penalized estimator via a proximal gradient algorithm becomes feasible. It is crucial for the computations that the data is organized in an array as is the case for the three dimensional VSD imaging data. This allows for the use of array arithmetic that is both memory and time efficient. The proposed method is implemented and showcased in the R package dynamo available from CRAN. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
[1]   Efficient estimation for nonparametric spatio-temporal models with nonparametric autocorrelated errors [J].
Luo, Xuehong ;
Zhao, Zihan ;
Wang, Hongxia ;
Li, Chenhua .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (03) :790-823
[2]   The nonparametric estimation of long memory spatio-temporal random field models [J].
Wang LiHong .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) :1115-1128
[3]   Nonparametric estimation of the spatio-temporal covariance structure [J].
Yang, Kai ;
Qiu, Peihua .
STATISTICS IN MEDICINE, 2019, 38 (23) :4555-4565
[4]   Prediction for spatio-temporal models with autoregression in errors [J].
Wang, Hongxia ;
Wang, Jinde ;
Huang, Bo .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) :217-244
[5]   Sparse Estimation of Polynomial and Rational Dynamical Models [J].
Rojas, Cristian R. ;
Toth, Roland ;
Hjalmarsson, Hakan .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) :2962-2977
[6]   Spatio-temporal random fields: compressible representation and distributed estimation [J].
Piatkowski, Nico ;
Lee, Sangkyun ;
Morik, Katharina .
MACHINE LEARNING, 2013, 93 (01) :115-139
[7]   A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates [J].
Lindstrom, Johan ;
Szpiro, Adam A. ;
Sampson, Paul D. ;
Oron, Assaf P. ;
Richards, Mark ;
Larson, Tim V. ;
Sheppard, Lianne .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) :411-433
[8]   Evaluating the performance of spatio-temporal Bayesian models in disease mapping [J].
Ugarte, M. D. ;
Goicoa, T. ;
Ibanez, B. ;
Militino, A. R. .
ENVIRONMETRICS, 2009, 20 (06) :647-665
[9]   An adaptive wavelet neural network for spatio-temporal system identification [J].
Wei, H. L. ;
Billings, S. A. ;
Zhao, Y. F. ;
Guo, L. Z. .
NEURAL NETWORKS, 2010, 23 (10) :1286-1299
[10]   REGULARIZED ESTIMATION IN HIGH-DIMENSIONAL VECTOR AUTO-REGRESSIVE MODELS USING SPATIO-TEMPORAL INFORMATION [J].
Wang, Zhenzhong ;
Safikhani, Abolfazl ;
Zhu, Zhengyuan ;
Matteson, David S. .
STATISTICA SINICA, 2023, 33 :1271-1294