A new Jacobi Tau method for fuzzy fractional Fredholm nonlinear integro-differential equations

被引:3
作者
Bidari, Azizeh [1 ]
Dastmalchi Saei, Farhad [1 ]
Baghmisheh, Mahdi [1 ]
Allahviranloo, Tofigh [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Tabriz Branch, Tabriz, Iran
[2] Bahcesehir Univ, Dept Engn & Nat Sci, Istanbul, Turkey
关键词
Spectral Tau method; Fuzzy nonlinear integro-differential equations; Convergence analysis; Fuzzy Caputo fractional derivative; Fractional-order Jacobi polynomials; NUMBER-VALUED FUNCTIONS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION;
D O I
10.1007/s00500-021-05578-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a numerical method based on new fractional-order Jacobi polynomials for solving nonlinear fuzzy fractional integro-differential equations. Some operational matrices are used to reduce the problem to the system of algebraic equations. The convergence analysis of the method is provided. The accuracy of the method is illustrated by solving some numerical experiments.
引用
收藏
页码:5855 / 5865
页数:11
相关论文
共 36 条
[1]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[2]   A Jacobi operational matrix for solving a fuzzy linear fractional differential equation [J].
Ahmadian, Ali ;
Suleiman, Mohamed ;
Salahshour, Soheil ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[3]   An Analytical Numerical Method for Solving Fuzzy Fractional Volterra Integro-Differential Equations [J].
Alaroud, Mohammad ;
Al-Smadi, Mohammed ;
Ahmad, Rokiah Rozita ;
Din, Ummul Khair Salma .
SYMMETRY-BASEL, 2019, 11 (02)
[4]   Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations [J].
Alikhani, Robab ;
Bahrami, Fariba .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (08) :2007-2017
[5]   Fuzzy fractional differential equations under generalized fuzzy Caputo derivative [J].
Allahviranloo, T. ;
Armand, A. ;
Gouyandeh, Z. .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) :1481-1490
[6]  
Allahviranloo T, 2020, FUZZY FRACTIONAL DIF, P1, DOI [10.1007/978-3-030-51272-9_1, DOI 10.1007/978-3-030-51272-9_1]
[7]  
Armand A., 2015, Ann. Fuzzy Math. Inform., V10, P789
[8]   On the fractional differential equations with uncertainty [J].
Arshad, Sadia ;
Lupulescu, Vasile .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3685-3693
[9]   Existence and uniqueness of fuzzy solution for the nonlinear fuzzy integrodifferential equations [J].
Balasubramaniam, P ;
Muralisankar, S .
APPLIED MATHEMATICS LETTERS, 2001, 14 (04) :455-462
[10]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599