Proteolysis of Peptide Dendrimers

被引:34
|
作者
Sommer, Peter [1 ]
Fluxa, Viviana S. [1 ]
Darbre, Tamis [1 ]
Reymond, Jean-Louis [1 ]
机构
[1] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
amino acids; biomimetics; dendrimers; mass spectrometry; proteolysis; ENZYMATIC STABILITY; ENZYMES; RESISTANT; LIBRARIES; AMINO; IDENTIFICATION; ANTAGONISTS; INHIBITION; RECEPTORS; CHEMISTRY;
D O I
10.1002/cbic.200900060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of proteins and peptides to undergo proteolysis is essential to their biological function. Herein, we report the first detailed study of the protease reactivity of peptide dendrimers. Dendrimers are regularly ramified, tree-like synthetic macromolecules with promising application in technology and medicine. Using trypsin and alpha-chymotrypsin cleavage sites as models, we show that the protease reactivity of peptide dendrimers can be controlled by the degree of branching. Dendrimers with two or three amino acids between branching points were readily cleaved by trypsin irrespective of the position of the reactive sequence within the dendrimers, for example in D1, (Ac-Gly-Phe-Pro)(4)(Dap-Hyp-Arg(down arrow)Met)(2)Dap-Ser-Gly-beta Ala-NH2, and D12, (Ac-Ser-Ala)(8)(Dap-Ala-Arg(down arrow))(4)(Dap-Ala-Asp)(2)Dap-Phe-Ala-Lys*-NH2 (Dap: (S)-2,3-diaminopropionic acid branching point, Hyp: hydroxyproline, Lys*: FITC-labeled lysine (down arrow): cleavage site). On the other hand cleavage was blocked in more compact dendrimers with only one amino acid between branching points, for example in D18B, (Ac-Glu)(8)(Dap-Phe)(4)(Dap-Arg)(2)(Dap-Leu-NH2). The control of proteolysis by topology provides a novel possibility to tune the biological properties of peptide dendrimers not available in linear peptides, and should be generally useful for their use as functional biomolecule analogues, for example, in the context of drug delivery applications.
引用
收藏
页码:1527 / 1536
页数:10
相关论文
共 50 条
  • [1] Peptide dendrimers
    Niederhafner, P
    Sebestík, J
    Jezek, J
    JOURNAL OF PEPTIDE SCIENCE, 2005, 11 (12) : 757 - 788
  • [2] Multivalent peptide dendrimers
    Malda, H
    van Genderen, MHP
    Hackeng, TM
    Meijer, EW
    BIOPOLYMERS, 2005, 80 (04) : 514 - 514
  • [3] Catalytic peptide dendrimers
    Esposito, A
    Delort, E
    Lagnoux, D
    Djojo, F
    Reymond, JL
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (12) : 1381 - 1383
  • [4] Periplasm, peptide, and proteolysis
    Underwood, Jason G.
    ACS CHEMICAL BIOLOGY, 2007, 2 (12) : 761 - 761
  • [5] Catalytic peptide dendrimers.
    Reymond, JL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U529 - U529
  • [6] Multivalent peptide dendrimers for targeting
    Helms, Brett A.
    van Baal, Ingrid
    de Graaf-Heuvelmans, Peggy T. H. M.
    Merkx, Maarten
    Meijer, E. W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [7] Selective catalysis with peptide dendrimers
    Douat-Casassus, C
    Darbre, T
    Reymond, JL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) : 7817 - 7826
  • [8] Membrane permeable α,ε-peptide dendrimers
    Eom, KD
    Yang, JL
    Tam, JP
    BIOPOLYMERS, 2003, 71 (03) : 380 - 380
  • [9] Peptide-Decorated Dendrimers and Their Bioapplications
    Wan, Jingjing
    Alewood, Paul F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (17) : 5124 - 5134
  • [10] Protein transduction by lipidic peptide dendrimers
    Bayele, Henry K.
    Ramaswamy, Chandrasekaran
    Wilderspin, Andrew F.
    Srai, Kaila S.
    Toth, Istvan
    Florence, Alexander T.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 95 (06) : 1227 - 1237